L(s) = 1 | + (−6.02 + 10.4i)2-s + (−96.9 + 167. i)3-s + (183. + 317. i)4-s − 26.3·5-s + (−1.16e3 − 2.02e3i)6-s + (−1.34e3 − 2.33e3i)7-s − 1.05e4·8-s + (−8.94e3 − 1.54e4i)9-s + (158. − 274. i)10-s + (−2.39e3 + 4.15e3i)11-s − 7.10e4·12-s + (−3.04e4 − 9.83e4i)13-s + 3.24e4·14-s + (2.54e3 − 4.41e3i)15-s + (−3.01e4 + 5.21e4i)16-s + (1.26e5 + 2.18e5i)17-s + ⋯ |
L(s) = 1 | + (−0.266 + 0.461i)2-s + (−0.690 + 1.19i)3-s + (0.358 + 0.620i)4-s − 0.0188·5-s + (−0.367 − 0.637i)6-s + (−0.212 − 0.367i)7-s − 0.914·8-s + (−0.454 − 0.786i)9-s + (0.00501 − 0.00868i)10-s + (−0.0493 + 0.0854i)11-s − 0.989·12-s + (−0.296 − 0.955i)13-s + 0.226·14-s + (0.0130 − 0.0225i)15-s + (−0.114 + 0.198i)16-s + (0.366 + 0.634i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(−0.849+0.527i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(−0.849+0.527i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
−0.849+0.527i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), −0.849+0.527i)
|
Particular Values
L(5) |
≈ |
0.191949−0.672631i |
L(21) |
≈ |
0.191949−0.672631i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(3.04e4+9.83e4i)T |
good | 2 | 1+(6.02−10.4i)T+(−256−443.i)T2 |
| 3 | 1+(96.9−167.i)T+(−9.84e3−1.70e4i)T2 |
| 5 | 1+26.3T+1.95e6T2 |
| 7 | 1+(1.34e3+2.33e3i)T+(−2.01e7+3.49e7i)T2 |
| 11 | 1+(2.39e3−4.15e3i)T+(−1.17e9−2.04e9i)T2 |
| 17 | 1+(−1.26e5−2.18e5i)T+(−5.92e10+1.02e11i)T2 |
| 19 | 1+(−2.78e5−4.82e5i)T+(−1.61e11+2.79e11i)T2 |
| 23 | 1+(1.53e5−2.65e5i)T+(−9.00e11−1.55e12i)T2 |
| 29 | 1+(2.77e6−4.81e6i)T+(−7.25e12−1.25e13i)T2 |
| 31 | 1+3.02e6T+2.64e13T2 |
| 37 | 1+(−7.14e6+1.23e7i)T+(−6.49e13−1.12e14i)T2 |
| 41 | 1+(1.16e7−2.02e7i)T+(−1.63e14−2.83e14i)T2 |
| 43 | 1+(−2.14e7−3.72e7i)T+(−2.51e14+4.35e14i)T2 |
| 47 | 1−2.42e7T+1.11e15T2 |
| 53 | 1+6.28e7T+3.29e15T2 |
| 59 | 1+(−4.66e7−8.08e7i)T+(−4.33e15+7.50e15i)T2 |
| 61 | 1+(1.07e7+1.85e7i)T+(−5.84e15+1.01e16i)T2 |
| 67 | 1+(−9.99e7+1.73e8i)T+(−1.36e16−2.35e16i)T2 |
| 71 | 1+(−1.27e8−2.21e8i)T+(−2.29e16+3.97e16i)T2 |
| 73 | 1−1.64e7T+5.88e16T2 |
| 79 | 1+1.39e8T+1.19e17T2 |
| 83 | 1−3.64e8T+1.86e17T2 |
| 89 | 1+(5.80e8−1.00e9i)T+(−1.75e17−3.03e17i)T2 |
| 97 | 1+(1.89e8+3.28e8i)T+(−3.80e17+6.58e17i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.93229873147887871187333913508, −16.81464257238157003950958281504, −16.07694198473499614264121814872, −14.91883701002373592338017637452, −12.60217410584602126667615231198, −11.05492846770605494125020673963, −9.713227878557483332817002166355, −7.73711103259852922890177030063, −5.72062841336620563854103428193, −3.65862253641760444350475853061,
0.43992966011112630111781861369, 2.09545215114098101987733649320, 5.77961195924373777327709730125, 7.12426605224116315788092876028, 9.489341672810330661891562978611, 11.36048117568791163169312333074, 12.15751457529098082997917145255, 13.80485166480576551994953505593, 15.59140309722907087571147851093, 17.27599088573636237076833075433