L(s) = 1 | − 2.66·2-s + 5.07·4-s + 5-s + 4.68·7-s − 8.19·8-s − 2.66·10-s − 3.50·11-s − 4.56·13-s − 12.4·14-s + 11.6·16-s + 6.56·17-s − 4.10·19-s + 5.07·20-s + 9.32·22-s + 6.92·23-s + 25-s + 12.1·26-s + 23.7·28-s − 29-s + 8.10·31-s − 14.5·32-s − 17.4·34-s + 4.68·35-s + 4.27·37-s + 10.9·38-s − 8.19·40-s − 5.10·41-s + ⋯ |
L(s) = 1 | − 1.88·2-s + 2.53·4-s + 0.447·5-s + 1.76·7-s − 2.89·8-s − 0.841·10-s − 1.05·11-s − 1.26·13-s − 3.32·14-s + 2.91·16-s + 1.59·17-s − 0.942·19-s + 1.13·20-s + 1.98·22-s + 1.44·23-s + 0.200·25-s + 2.38·26-s + 4.49·28-s − 0.185·29-s + 1.45·31-s − 2.57·32-s − 2.99·34-s + 0.791·35-s + 0.702·37-s + 1.77·38-s − 1.29·40-s − 0.797·41-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8855067710 |
L(21) |
≈ |
0.8855067710 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 29 | 1+T |
good | 2 | 1+2.66T+2T2 |
| 7 | 1−4.68T+7T2 |
| 11 | 1+3.50T+11T2 |
| 13 | 1+4.56T+13T2 |
| 17 | 1−6.56T+17T2 |
| 19 | 1+4.10T+19T2 |
| 23 | 1−6.92T+23T2 |
| 31 | 1−8.10T+31T2 |
| 37 | 1−4.27T+37T2 |
| 41 | 1+5.10T+41T2 |
| 43 | 1+8.47T+43T2 |
| 47 | 1−5.41T+47T2 |
| 53 | 1−4.20T+53T2 |
| 59 | 1−5.36T+59T2 |
| 61 | 1−1.27T+61T2 |
| 67 | 1−9.96T+67T2 |
| 71 | 1+12.2T+71T2 |
| 73 | 1−8.37T+73T2 |
| 79 | 1+11.1T+79T2 |
| 83 | 1−14.6T+83T2 |
| 89 | 1−2.20T+89T2 |
| 97 | 1−5.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.730955696061759256548690302413, −8.691532990679175642361826726721, −8.104743122307452318525578101850, −7.60314183237129379068350510049, −6.82259209356041568925178562274, −5.52780307981793170979619684669, −4.85244140875330066387011520809, −2.80572240898260933064835461589, −2.02802529977135241119668376759, −0.941004506408326481606102938697,
0.941004506408326481606102938697, 2.02802529977135241119668376759, 2.80572240898260933064835461589, 4.85244140875330066387011520809, 5.52780307981793170979619684669, 6.82259209356041568925178562274, 7.60314183237129379068350510049, 8.104743122307452318525578101850, 8.691532990679175642361826726721, 9.730955696061759256548690302413