Properties

Label 2-1305-1.1-c1-0-10
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66·2-s + 5.07·4-s + 5-s + 4.68·7-s − 8.19·8-s − 2.66·10-s − 3.50·11-s − 4.56·13-s − 12.4·14-s + 11.6·16-s + 6.56·17-s − 4.10·19-s + 5.07·20-s + 9.32·22-s + 6.92·23-s + 25-s + 12.1·26-s + 23.7·28-s − 29-s + 8.10·31-s − 14.5·32-s − 17.4·34-s + 4.68·35-s + 4.27·37-s + 10.9·38-s − 8.19·40-s − 5.10·41-s + ⋯
L(s)  = 1  − 1.88·2-s + 2.53·4-s + 0.447·5-s + 1.76·7-s − 2.89·8-s − 0.841·10-s − 1.05·11-s − 1.26·13-s − 3.32·14-s + 2.91·16-s + 1.59·17-s − 0.942·19-s + 1.13·20-s + 1.98·22-s + 1.44·23-s + 0.200·25-s + 2.38·26-s + 4.49·28-s − 0.185·29-s + 1.45·31-s − 2.57·32-s − 2.99·34-s + 0.791·35-s + 0.702·37-s + 1.77·38-s − 1.29·40-s − 0.797·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8855067710\)
\(L(\frac12)\) \(\approx\) \(0.8855067710\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good2 \( 1 + 2.66T + 2T^{2} \)
7 \( 1 - 4.68T + 7T^{2} \)
11 \( 1 + 3.50T + 11T^{2} \)
13 \( 1 + 4.56T + 13T^{2} \)
17 \( 1 - 6.56T + 17T^{2} \)
19 \( 1 + 4.10T + 19T^{2} \)
23 \( 1 - 6.92T + 23T^{2} \)
31 \( 1 - 8.10T + 31T^{2} \)
37 \( 1 - 4.27T + 37T^{2} \)
41 \( 1 + 5.10T + 41T^{2} \)
43 \( 1 + 8.47T + 43T^{2} \)
47 \( 1 - 5.41T + 47T^{2} \)
53 \( 1 - 4.20T + 53T^{2} \)
59 \( 1 - 5.36T + 59T^{2} \)
61 \( 1 - 1.27T + 61T^{2} \)
67 \( 1 - 9.96T + 67T^{2} \)
71 \( 1 + 12.2T + 71T^{2} \)
73 \( 1 - 8.37T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 14.6T + 83T^{2} \)
89 \( 1 - 2.20T + 89T^{2} \)
97 \( 1 - 5.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.730955696061759256548690302413, −8.691532990679175642361826726721, −8.104743122307452318525578101850, −7.60314183237129379068350510049, −6.82259209356041568925178562274, −5.52780307981793170979619684669, −4.85244140875330066387011520809, −2.80572240898260933064835461589, −2.02802529977135241119668376759, −0.941004506408326481606102938697, 0.941004506408326481606102938697, 2.02802529977135241119668376759, 2.80572240898260933064835461589, 4.85244140875330066387011520809, 5.52780307981793170979619684669, 6.82259209356041568925178562274, 7.60314183237129379068350510049, 8.104743122307452318525578101850, 8.691532990679175642361826726721, 9.730955696061759256548690302413

Graph of the $Z$-function along the critical line