L(s) = 1 | + 0.431·2-s − 1.81·4-s + 5-s − 2.42·7-s − 1.64·8-s + 0.431·10-s − 0.00755·11-s − 2.73·13-s − 1.04·14-s + 2.91·16-s + 4.73·17-s + 2.74·19-s − 1.81·20-s − 0.00325·22-s + 3.68·23-s + 25-s − 1.17·26-s + 4.39·28-s − 29-s + 1.25·31-s + 4.55·32-s + 2.04·34-s − 2.42·35-s + 6.60·37-s + 1.18·38-s − 1.64·40-s + 0.160·41-s + ⋯ |
L(s) = 1 | + 0.305·2-s − 0.906·4-s + 0.447·5-s − 0.916·7-s − 0.581·8-s + 0.136·10-s − 0.00227·11-s − 0.757·13-s − 0.279·14-s + 0.729·16-s + 1.14·17-s + 0.629·19-s − 0.405·20-s − 0.000694·22-s + 0.769·23-s + 0.200·25-s − 0.231·26-s + 0.831·28-s − 0.185·29-s + 0.225·31-s + 0.804·32-s + 0.350·34-s − 0.409·35-s + 1.08·37-s + 0.192·38-s − 0.260·40-s + 0.0250·41-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.418353556 |
L(21) |
≈ |
1.418353556 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 29 | 1+T |
good | 2 | 1−0.431T+2T2 |
| 7 | 1+2.42T+7T2 |
| 11 | 1+0.00755T+11T2 |
| 13 | 1+2.73T+13T2 |
| 17 | 1−4.73T+17T2 |
| 19 | 1−2.74T+19T2 |
| 23 | 1−3.68T+23T2 |
| 31 | 1−1.25T+31T2 |
| 37 | 1−6.60T+37T2 |
| 41 | 1−0.160T+41T2 |
| 43 | 1−11.0T+43T2 |
| 47 | 1−10.3T+47T2 |
| 53 | 1+11.1T+53T2 |
| 59 | 1+8.85T+59T2 |
| 61 | 1−13.5T+61T2 |
| 67 | 1−4.69T+67T2 |
| 71 | 1−1.48T+71T2 |
| 73 | 1−2.75T+73T2 |
| 79 | 1−2.72T+79T2 |
| 83 | 1+7.81T+83T2 |
| 89 | 1−7.59T+89T2 |
| 97 | 1+7.02T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.579621732537984826438462580789, −9.150471074847902564009627814376, −8.013170310112582796775189720991, −7.20565407356210053359518570791, −6.09659681256263149858805649417, −5.46529441741522572718183172847, −4.58301396687217729650998958456, −3.50627935372303529769963027706, −2.69670009959084928639535592460, −0.847877574432523795244460143323,
0.847877574432523795244460143323, 2.69670009959084928639535592460, 3.50627935372303529769963027706, 4.58301396687217729650998958456, 5.46529441741522572718183172847, 6.09659681256263149858805649417, 7.20565407356210053359518570791, 8.013170310112582796775189720991, 9.150471074847902564009627814376, 9.579621732537984826438462580789