Properties

Label 2-1305-1.1-c3-0-106
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.08·2-s − 3.67·4-s + 5·5-s + 15.0·7-s + 24.2·8-s − 10.4·10-s + 4.52·11-s − 46.0·13-s − 31.3·14-s − 21.1·16-s + 29.2·17-s − 69.5·19-s − 18.3·20-s − 9.41·22-s + 97.2·23-s + 25·25-s + 95.6·26-s − 55.2·28-s + 29·29-s + 28.8·31-s − 150.·32-s − 60.8·34-s + 75.2·35-s − 423.·37-s + 144.·38-s + 121.·40-s − 299.·41-s + ⋯
L(s)  = 1  − 0.735·2-s − 0.459·4-s + 0.447·5-s + 0.812·7-s + 1.07·8-s − 0.328·10-s + 0.124·11-s − 0.981·13-s − 0.597·14-s − 0.330·16-s + 0.417·17-s − 0.840·19-s − 0.205·20-s − 0.0912·22-s + 0.881·23-s + 0.200·25-s + 0.721·26-s − 0.373·28-s + 0.185·29-s + 0.167·31-s − 0.830·32-s − 0.306·34-s + 0.363·35-s − 1.88·37-s + 0.618·38-s + 0.479·40-s − 1.14·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 - 29T \)
good2 \( 1 + 2.08T + 8T^{2} \)
7 \( 1 - 15.0T + 343T^{2} \)
11 \( 1 - 4.52T + 1.33e3T^{2} \)
13 \( 1 + 46.0T + 2.19e3T^{2} \)
17 \( 1 - 29.2T + 4.91e3T^{2} \)
19 \( 1 + 69.5T + 6.85e3T^{2} \)
23 \( 1 - 97.2T + 1.21e4T^{2} \)
31 \( 1 - 28.8T + 2.97e4T^{2} \)
37 \( 1 + 423.T + 5.06e4T^{2} \)
41 \( 1 + 299.T + 6.89e4T^{2} \)
43 \( 1 + 302.T + 7.95e4T^{2} \)
47 \( 1 + 7.16T + 1.03e5T^{2} \)
53 \( 1 - 602.T + 1.48e5T^{2} \)
59 \( 1 - 139.T + 2.05e5T^{2} \)
61 \( 1 + 866.T + 2.26e5T^{2} \)
67 \( 1 - 823.T + 3.00e5T^{2} \)
71 \( 1 - 201.T + 3.57e5T^{2} \)
73 \( 1 - 1.10e3T + 3.89e5T^{2} \)
79 \( 1 + 89.3T + 4.93e5T^{2} \)
83 \( 1 - 589.T + 5.71e5T^{2} \)
89 \( 1 + 926.T + 7.04e5T^{2} \)
97 \( 1 - 840.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.783211126923982057508918650543, −8.302461239236179254800032115393, −7.39212622106990689326147152418, −6.61934696821673611261220392457, −5.16546570232164932698885064482, −4.89987680533214420906899861319, −3.64504041687329343166320754528, −2.19886293527253624781413073011, −1.28071623970104388664223390581, 0, 1.28071623970104388664223390581, 2.19886293527253624781413073011, 3.64504041687329343166320754528, 4.89987680533214420906899861319, 5.16546570232164932698885064482, 6.61934696821673611261220392457, 7.39212622106990689326147152418, 8.302461239236179254800032115393, 8.783211126923982057508918650543

Graph of the $Z$-function along the critical line