Properties

Label 2-1305-1.1-c3-0-127
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.34·2-s + 3.20·4-s + 5·5-s − 11.8·7-s − 16.0·8-s + 16.7·10-s − 13.7·11-s + 76.6·13-s − 39.5·14-s − 79.3·16-s + 21.9·17-s + 11.7·19-s + 16.0·20-s − 46.0·22-s − 184.·23-s + 25·25-s + 256.·26-s − 37.8·28-s + 29·29-s + 181.·31-s − 137.·32-s + 73.5·34-s − 59.0·35-s − 61.5·37-s + 39.2·38-s − 80.2·40-s − 465.·41-s + ⋯
L(s)  = 1  + 1.18·2-s + 0.400·4-s + 0.447·5-s − 0.637·7-s − 0.709·8-s + 0.529·10-s − 0.377·11-s + 1.63·13-s − 0.754·14-s − 1.24·16-s + 0.313·17-s + 0.141·19-s + 0.179·20-s − 0.446·22-s − 1.67·23-s + 0.200·25-s + 1.93·26-s − 0.255·28-s + 0.185·29-s + 1.05·31-s − 0.757·32-s + 0.370·34-s − 0.285·35-s − 0.273·37-s + 0.167·38-s − 0.317·40-s − 1.77·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 3.34T + 8T^{2} \)
7 \( 1 + 11.8T + 343T^{2} \)
11 \( 1 + 13.7T + 1.33e3T^{2} \)
13 \( 1 - 76.6T + 2.19e3T^{2} \)
17 \( 1 - 21.9T + 4.91e3T^{2} \)
19 \( 1 - 11.7T + 6.85e3T^{2} \)
23 \( 1 + 184.T + 1.21e4T^{2} \)
31 \( 1 - 181.T + 2.97e4T^{2} \)
37 \( 1 + 61.5T + 5.06e4T^{2} \)
41 \( 1 + 465.T + 6.89e4T^{2} \)
43 \( 1 + 410.T + 7.95e4T^{2} \)
47 \( 1 + 307.T + 1.03e5T^{2} \)
53 \( 1 - 371.T + 1.48e5T^{2} \)
59 \( 1 + 287.T + 2.05e5T^{2} \)
61 \( 1 - 421.T + 2.26e5T^{2} \)
67 \( 1 + 899.T + 3.00e5T^{2} \)
71 \( 1 + 37.8T + 3.57e5T^{2} \)
73 \( 1 + 859.T + 3.89e5T^{2} \)
79 \( 1 + 1.15e3T + 4.93e5T^{2} \)
83 \( 1 - 30.2T + 5.71e5T^{2} \)
89 \( 1 + 231.T + 7.04e5T^{2} \)
97 \( 1 - 513.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.760921341723030049590548568603, −8.194251705567657574044888290487, −6.76593458546728725020806396249, −6.15606514368575990032593229664, −5.56623804264242254151580805932, −4.56165276133481271630568171951, −3.61209468487397329655486774091, −2.98501436474733770514100616856, −1.62486669995802706816280226097, 0, 1.62486669995802706816280226097, 2.98501436474733770514100616856, 3.61209468487397329655486774091, 4.56165276133481271630568171951, 5.56623804264242254151580805932, 6.15606514368575990032593229664, 6.76593458546728725020806396249, 8.194251705567657574044888290487, 8.760921341723030049590548568603

Graph of the $Z$-function along the critical line