Properties

Label 2-1305-1.1-c3-0-135
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.24·2-s + 19.4·4-s − 5·5-s − 18.4·7-s + 60.0·8-s − 26.2·10-s − 11.5·11-s − 34.4·13-s − 96.6·14-s + 159.·16-s − 70.7·17-s + 3.52·19-s − 97.3·20-s − 60.4·22-s + 18.3·23-s + 25·25-s − 180.·26-s − 359.·28-s − 29·29-s − 120.·31-s + 353.·32-s − 370.·34-s + 92.2·35-s − 182.·37-s + 18.4·38-s − 300.·40-s − 74.4·41-s + ⋯
L(s)  = 1  + 1.85·2-s + 2.43·4-s − 0.447·5-s − 0.996·7-s + 2.65·8-s − 0.828·10-s − 0.316·11-s − 0.735·13-s − 1.84·14-s + 2.48·16-s − 1.00·17-s + 0.0425·19-s − 1.08·20-s − 0.585·22-s + 0.166·23-s + 0.200·25-s − 1.36·26-s − 2.42·28-s − 0.185·29-s − 0.698·31-s + 1.95·32-s − 1.87·34-s + 0.445·35-s − 0.810·37-s + 0.0787·38-s − 1.18·40-s − 0.283·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 + 29T \)
good2 \( 1 - 5.24T + 8T^{2} \)
7 \( 1 + 18.4T + 343T^{2} \)
11 \( 1 + 11.5T + 1.33e3T^{2} \)
13 \( 1 + 34.4T + 2.19e3T^{2} \)
17 \( 1 + 70.7T + 4.91e3T^{2} \)
19 \( 1 - 3.52T + 6.85e3T^{2} \)
23 \( 1 - 18.3T + 1.21e4T^{2} \)
31 \( 1 + 120.T + 2.97e4T^{2} \)
37 \( 1 + 182.T + 5.06e4T^{2} \)
41 \( 1 + 74.4T + 6.89e4T^{2} \)
43 \( 1 + 405.T + 7.95e4T^{2} \)
47 \( 1 - 327.T + 1.03e5T^{2} \)
53 \( 1 + 409.T + 1.48e5T^{2} \)
59 \( 1 + 120.T + 2.05e5T^{2} \)
61 \( 1 - 34.6T + 2.26e5T^{2} \)
67 \( 1 - 671.T + 3.00e5T^{2} \)
71 \( 1 + 873.T + 3.57e5T^{2} \)
73 \( 1 - 432.T + 3.89e5T^{2} \)
79 \( 1 + 548.T + 4.93e5T^{2} \)
83 \( 1 + 511.T + 5.71e5T^{2} \)
89 \( 1 - 788.T + 7.04e5T^{2} \)
97 \( 1 - 967.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.834295645648886903191391959806, −7.58922317685896206472814650065, −6.91098921579089286727680459426, −6.28452774099409358165120992919, −5.29948942810818715251206358019, −4.59764256450685490673693803676, −3.65683635501457198798157905983, −2.97211939548308148220912384280, −1.98867930045874675762421816949, 0, 1.98867930045874675762421816949, 2.97211939548308148220912384280, 3.65683635501457198798157905983, 4.59764256450685490673693803676, 5.29948942810818715251206358019, 6.28452774099409358165120992919, 6.91098921579089286727680459426, 7.58922317685896206472814650065, 8.834295645648886903191391959806

Graph of the $Z$-function along the critical line