Properties

Label 2-1305-1.1-c3-0-136
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.13·2-s + 18.3·4-s − 5·5-s − 7.03·7-s + 52.9·8-s − 25.6·10-s − 47.2·11-s − 7.36·13-s − 36.0·14-s + 125.·16-s + 15.0·17-s − 117.·19-s − 91.6·20-s − 242.·22-s − 97.0·23-s + 25·25-s − 37.8·26-s − 128.·28-s + 29·29-s + 112.·31-s + 218.·32-s + 77.2·34-s + 35.1·35-s − 128.·37-s − 604.·38-s − 264.·40-s − 432.·41-s + ⋯
L(s)  = 1  + 1.81·2-s + 2.29·4-s − 0.447·5-s − 0.379·7-s + 2.34·8-s − 0.811·10-s − 1.29·11-s − 0.157·13-s − 0.688·14-s + 1.95·16-s + 0.214·17-s − 1.42·19-s − 1.02·20-s − 2.35·22-s − 0.880·23-s + 0.200·25-s − 0.285·26-s − 0.869·28-s + 0.185·29-s + 0.650·31-s + 1.20·32-s + 0.389·34-s + 0.169·35-s − 0.572·37-s − 2.57·38-s − 1.04·40-s − 1.64·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 5.13T + 8T^{2} \)
7 \( 1 + 7.03T + 343T^{2} \)
11 \( 1 + 47.2T + 1.33e3T^{2} \)
13 \( 1 + 7.36T + 2.19e3T^{2} \)
17 \( 1 - 15.0T + 4.91e3T^{2} \)
19 \( 1 + 117.T + 6.85e3T^{2} \)
23 \( 1 + 97.0T + 1.21e4T^{2} \)
31 \( 1 - 112.T + 2.97e4T^{2} \)
37 \( 1 + 128.T + 5.06e4T^{2} \)
41 \( 1 + 432.T + 6.89e4T^{2} \)
43 \( 1 + 227.T + 7.95e4T^{2} \)
47 \( 1 - 280.T + 1.03e5T^{2} \)
53 \( 1 - 393.T + 1.48e5T^{2} \)
59 \( 1 - 226.T + 2.05e5T^{2} \)
61 \( 1 - 65.2T + 2.26e5T^{2} \)
67 \( 1 + 476.T + 3.00e5T^{2} \)
71 \( 1 - 65.8T + 3.57e5T^{2} \)
73 \( 1 + 1.06e3T + 3.89e5T^{2} \)
79 \( 1 - 923.T + 4.93e5T^{2} \)
83 \( 1 + 34.9T + 5.71e5T^{2} \)
89 \( 1 - 404.T + 7.04e5T^{2} \)
97 \( 1 - 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.605463175234847324574605541549, −7.80409287337618403136827763733, −6.90383884024154204570688059805, −6.19559192333955811025886012537, −5.31688518705410480049785035120, −4.59581005400666137125924514196, −3.73788854248368094347821711272, −2.87657558300825658518994427597, −2.00279495293136063602715170222, 0, 2.00279495293136063602715170222, 2.87657558300825658518994427597, 3.73788854248368094347821711272, 4.59581005400666137125924514196, 5.31688518705410480049785035120, 6.19559192333955811025886012537, 6.90383884024154204570688059805, 7.80409287337618403136827763733, 8.605463175234847324574605541549

Graph of the $Z$-function along the critical line