Properties

Label 2-1323-1.1-c1-0-17
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·5-s + 3·8-s − 3·10-s + 5·11-s + 6·13-s − 16-s − 6·17-s + 3·19-s − 3·20-s − 5·22-s + 23-s + 4·25-s − 6·26-s − 2·29-s − 3·31-s − 5·32-s + 6·34-s + 3·37-s − 3·38-s + 9·40-s − 9·41-s + 6·43-s − 5·44-s − 46-s + 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.34·5-s + 1.06·8-s − 0.948·10-s + 1.50·11-s + 1.66·13-s − 1/4·16-s − 1.45·17-s + 0.688·19-s − 0.670·20-s − 1.06·22-s + 0.208·23-s + 4/5·25-s − 1.17·26-s − 0.371·29-s − 0.538·31-s − 0.883·32-s + 1.02·34-s + 0.493·37-s − 0.486·38-s + 1.42·40-s − 1.40·41-s + 0.914·43-s − 0.753·44-s − 0.147·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.491293298\)
\(L(\frac12)\) \(\approx\) \(1.491293298\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + T + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309598966834482564926917981283, −9.077294699564776327557372455758, −8.413589450998261439447207221768, −7.13167564560012152294416600100, −6.34215171511087571525667957813, −5.63752173484997695290532171122, −4.47191624657260288271626711721, −3.59632548449757607506915649618, −1.92610841189085090066739675799, −1.12292208190814267208777122415, 1.12292208190814267208777122415, 1.92610841189085090066739675799, 3.59632548449757607506915649618, 4.47191624657260288271626711721, 5.63752173484997695290532171122, 6.34215171511087571525667957813, 7.13167564560012152294416600100, 8.413589450998261439447207221768, 9.077294699564776327557372455758, 9.309598966834482564926917981283

Graph of the $Z$-function along the critical line