L(s) = 1 | − 4.67·2-s + 13.8·4-s + 15.5·5-s − 27.2·8-s − 72.6·10-s − 63.4·11-s − 53.1·13-s + 16.7·16-s + 68.4·17-s + 86.0·19-s + 215.·20-s + 296.·22-s − 46.9·23-s + 116.·25-s + 248.·26-s + 169.·29-s + 141.·31-s + 139.·32-s − 319.·34-s − 411.·37-s − 402.·38-s − 423.·40-s + 49.0·41-s − 356.·43-s − 878.·44-s + 219.·46-s + 387.·47-s + ⋯ |
L(s) = 1 | − 1.65·2-s + 1.72·4-s + 1.39·5-s − 1.20·8-s − 2.29·10-s − 1.74·11-s − 1.13·13-s + 0.261·16-s + 0.976·17-s + 1.03·19-s + 2.40·20-s + 2.87·22-s − 0.425·23-s + 0.932·25-s + 1.87·26-s + 1.08·29-s + 0.821·31-s + 0.772·32-s − 1.61·34-s − 1.83·37-s − 1.71·38-s − 1.67·40-s + 0.186·41-s − 1.26·43-s − 3.00·44-s + 0.702·46-s + 1.20·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+4.67T+8T2 |
| 5 | 1−15.5T+125T2 |
| 11 | 1+63.4T+1.33e3T2 |
| 13 | 1+53.1T+2.19e3T2 |
| 17 | 1−68.4T+4.91e3T2 |
| 19 | 1−86.0T+6.85e3T2 |
| 23 | 1+46.9T+1.21e4T2 |
| 29 | 1−169.T+2.43e4T2 |
| 31 | 1−141.T+2.97e4T2 |
| 37 | 1+411.T+5.06e4T2 |
| 41 | 1−49.0T+6.89e4T2 |
| 43 | 1+356.T+7.95e4T2 |
| 47 | 1−387.T+1.03e5T2 |
| 53 | 1−184.T+1.48e5T2 |
| 59 | 1−627.T+2.05e5T2 |
| 61 | 1+821.T+2.26e5T2 |
| 67 | 1+95.9T+3.00e5T2 |
| 71 | 1+733.T+3.57e5T2 |
| 73 | 1−750.T+3.89e5T2 |
| 79 | 1−23.5T+4.93e5T2 |
| 83 | 1−592.T+5.71e5T2 |
| 89 | 1+864.T+7.04e5T2 |
| 97 | 1+614.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.986622244657292978343557554888, −8.090174790929738396339932187172, −7.50794226420143644569768480356, −6.67740543191907973307549064264, −5.56339976854934418787985284595, −5.01638243829296425976353449211, −2.90525341950227781367710072641, −2.27778088135269098477359623677, −1.22537985344270257706748135095, 0,
1.22537985344270257706748135095, 2.27778088135269098477359623677, 2.90525341950227781367710072641, 5.01638243829296425976353449211, 5.56339976854934418787985284595, 6.67740543191907973307549064264, 7.50794226420143644569768480356, 8.090174790929738396339932187172, 8.986622244657292978343557554888