Properties

Label 2-1323-1.1-c3-0-124
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.45·2-s + 21.7·4-s + 19.3·5-s − 74.6·8-s − 105.·10-s + 11.2·11-s − 46.3·13-s + 233.·16-s − 97.6·17-s − 98.9·19-s + 419.·20-s − 61.1·22-s + 138.·23-s + 249.·25-s + 252.·26-s + 180.·29-s − 31.9·31-s − 674.·32-s + 532.·34-s − 205.·37-s + 539.·38-s − 1.44e3·40-s + 234.·41-s − 320.·43-s + 243.·44-s − 753.·46-s − 312.·47-s + ⋯
L(s)  = 1  − 1.92·2-s + 2.71·4-s + 1.73·5-s − 3.30·8-s − 3.33·10-s + 0.307·11-s − 0.988·13-s + 3.64·16-s − 1.39·17-s − 1.19·19-s + 4.69·20-s − 0.592·22-s + 1.25·23-s + 1.99·25-s + 1.90·26-s + 1.15·29-s − 0.184·31-s − 3.72·32-s + 2.68·34-s − 0.912·37-s + 2.30·38-s − 5.71·40-s + 0.892·41-s − 1.13·43-s + 0.833·44-s − 2.41·46-s − 0.970·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 5.45T + 8T^{2} \)
5 \( 1 - 19.3T + 125T^{2} \)
11 \( 1 - 11.2T + 1.33e3T^{2} \)
13 \( 1 + 46.3T + 2.19e3T^{2} \)
17 \( 1 + 97.6T + 4.91e3T^{2} \)
19 \( 1 + 98.9T + 6.85e3T^{2} \)
23 \( 1 - 138.T + 1.21e4T^{2} \)
29 \( 1 - 180.T + 2.43e4T^{2} \)
31 \( 1 + 31.9T + 2.97e4T^{2} \)
37 \( 1 + 205.T + 5.06e4T^{2} \)
41 \( 1 - 234.T + 6.89e4T^{2} \)
43 \( 1 + 320.T + 7.95e4T^{2} \)
47 \( 1 + 312.T + 1.03e5T^{2} \)
53 \( 1 - 53.7T + 1.48e5T^{2} \)
59 \( 1 - 400.T + 2.05e5T^{2} \)
61 \( 1 + 97.3T + 2.26e5T^{2} \)
67 \( 1 - 257.T + 3.00e5T^{2} \)
71 \( 1 - 253.T + 3.57e5T^{2} \)
73 \( 1 + 1.16e3T + 3.89e5T^{2} \)
79 \( 1 + 1.07e3T + 4.93e5T^{2} \)
83 \( 1 + 889.T + 5.71e5T^{2} \)
89 \( 1 + 647.T + 7.04e5T^{2} \)
97 \( 1 - 673.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.790614805654211236500847970872, −8.597445918451943660605573523551, −7.12201984342116235284839305267, −6.70544992009211824384127699757, −5.98956692708127004478806518884, −4.84147748973002035578153263653, −2.79263034457667444553670450622, −2.16421325523284409120256249426, −1.34102181639747164538667425451, 0, 1.34102181639747164538667425451, 2.16421325523284409120256249426, 2.79263034457667444553670450622, 4.84147748973002035578153263653, 5.98956692708127004478806518884, 6.70544992009211824384127699757, 7.12201984342116235284839305267, 8.597445918451943660605573523551, 8.790614805654211236500847970872

Graph of the $Z$-function along the critical line