Properties

Label 2-1323-1.1-c3-0-13
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.36·2-s + 3.31·4-s − 2.29·5-s + 15.7·8-s + 7.73·10-s − 44.4·11-s − 20.7·13-s − 79.5·16-s − 13.2·17-s − 62.0·19-s − 7.61·20-s + 149.·22-s + 90.1·23-s − 119.·25-s + 69.8·26-s − 100.·29-s − 94.5·31-s + 141.·32-s + 44.6·34-s + 196.·37-s + 208.·38-s − 36.2·40-s + 253.·41-s − 111.·43-s − 147.·44-s − 303.·46-s + 67.7·47-s + ⋯
L(s)  = 1  − 1.18·2-s + 0.414·4-s − 0.205·5-s + 0.696·8-s + 0.244·10-s − 1.21·11-s − 0.442·13-s − 1.24·16-s − 0.189·17-s − 0.749·19-s − 0.0851·20-s + 1.44·22-s + 0.817·23-s − 0.957·25-s + 0.526·26-s − 0.645·29-s − 0.547·31-s + 0.781·32-s + 0.225·34-s + 0.873·37-s + 0.890·38-s − 0.143·40-s + 0.964·41-s − 0.393·43-s − 0.504·44-s − 0.972·46-s + 0.210·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4009123139\)
\(L(\frac12)\) \(\approx\) \(0.4009123139\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 3.36T + 8T^{2} \)
5 \( 1 + 2.29T + 125T^{2} \)
11 \( 1 + 44.4T + 1.33e3T^{2} \)
13 \( 1 + 20.7T + 2.19e3T^{2} \)
17 \( 1 + 13.2T + 4.91e3T^{2} \)
19 \( 1 + 62.0T + 6.85e3T^{2} \)
23 \( 1 - 90.1T + 1.21e4T^{2} \)
29 \( 1 + 100.T + 2.43e4T^{2} \)
31 \( 1 + 94.5T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 - 253.T + 6.89e4T^{2} \)
43 \( 1 + 111.T + 7.95e4T^{2} \)
47 \( 1 - 67.7T + 1.03e5T^{2} \)
53 \( 1 + 358.T + 1.48e5T^{2} \)
59 \( 1 - 92.0T + 2.05e5T^{2} \)
61 \( 1 + 432.T + 2.26e5T^{2} \)
67 \( 1 + 695.T + 3.00e5T^{2} \)
71 \( 1 - 20.1T + 3.57e5T^{2} \)
73 \( 1 + 1.09e3T + 3.89e5T^{2} \)
79 \( 1 - 871.T + 4.93e5T^{2} \)
83 \( 1 - 233.T + 5.71e5T^{2} \)
89 \( 1 - 168.T + 7.04e5T^{2} \)
97 \( 1 + 1.14e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.279872115648345644102172585744, −8.475649437521100963303264185676, −7.70979845335107404213045358016, −7.28354953906816882142880311915, −6.06939929573574391029796091567, −5.01672629678486810696361036025, −4.17471287823295620746720732657, −2.77160027493984575583104685336, −1.76112432882888312823824299991, −0.37375584359369891671941513857, 0.37375584359369891671941513857, 1.76112432882888312823824299991, 2.77160027493984575583104685336, 4.17471287823295620746720732657, 5.01672629678486810696361036025, 6.06939929573574391029796091567, 7.28354953906816882142880311915, 7.70979845335107404213045358016, 8.475649437521100963303264185676, 9.279872115648345644102172585744

Graph of the $Z$-function along the critical line