L(s) = 1 | − 3.36·2-s + 3.31·4-s − 2.29·5-s + 15.7·8-s + 7.73·10-s − 44.4·11-s − 20.7·13-s − 79.5·16-s − 13.2·17-s − 62.0·19-s − 7.61·20-s + 149.·22-s + 90.1·23-s − 119.·25-s + 69.8·26-s − 100.·29-s − 94.5·31-s + 141.·32-s + 44.6·34-s + 196.·37-s + 208.·38-s − 36.2·40-s + 253.·41-s − 111.·43-s − 147.·44-s − 303.·46-s + 67.7·47-s + ⋯ |
L(s) = 1 | − 1.18·2-s + 0.414·4-s − 0.205·5-s + 0.696·8-s + 0.244·10-s − 1.21·11-s − 0.442·13-s − 1.24·16-s − 0.189·17-s − 0.749·19-s − 0.0851·20-s + 1.44·22-s + 0.817·23-s − 0.957·25-s + 0.526·26-s − 0.645·29-s − 0.547·31-s + 0.781·32-s + 0.225·34-s + 0.873·37-s + 0.890·38-s − 0.143·40-s + 0.964·41-s − 0.393·43-s − 0.504·44-s − 0.972·46-s + 0.210·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4009123139 |
L(21) |
≈ |
0.4009123139 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+3.36T+8T2 |
| 5 | 1+2.29T+125T2 |
| 11 | 1+44.4T+1.33e3T2 |
| 13 | 1+20.7T+2.19e3T2 |
| 17 | 1+13.2T+4.91e3T2 |
| 19 | 1+62.0T+6.85e3T2 |
| 23 | 1−90.1T+1.21e4T2 |
| 29 | 1+100.T+2.43e4T2 |
| 31 | 1+94.5T+2.97e4T2 |
| 37 | 1−196.T+5.06e4T2 |
| 41 | 1−253.T+6.89e4T2 |
| 43 | 1+111.T+7.95e4T2 |
| 47 | 1−67.7T+1.03e5T2 |
| 53 | 1+358.T+1.48e5T2 |
| 59 | 1−92.0T+2.05e5T2 |
| 61 | 1+432.T+2.26e5T2 |
| 67 | 1+695.T+3.00e5T2 |
| 71 | 1−20.1T+3.57e5T2 |
| 73 | 1+1.09e3T+3.89e5T2 |
| 79 | 1−871.T+4.93e5T2 |
| 83 | 1−233.T+5.71e5T2 |
| 89 | 1−168.T+7.04e5T2 |
| 97 | 1+1.14e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.279872115648345644102172585744, −8.475649437521100963303264185676, −7.70979845335107404213045358016, −7.28354953906816882142880311915, −6.06939929573574391029796091567, −5.01672629678486810696361036025, −4.17471287823295620746720732657, −2.77160027493984575583104685336, −1.76112432882888312823824299991, −0.37375584359369891671941513857,
0.37375584359369891671941513857, 1.76112432882888312823824299991, 2.77160027493984575583104685336, 4.17471287823295620746720732657, 5.01672629678486810696361036025, 6.06939929573574391029796091567, 7.28354953906816882142880311915, 7.70979845335107404213045358016, 8.475649437521100963303264185676, 9.279872115648345644102172585744