Properties

Label 2-1323-1.1-c3-0-142
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.62·2-s + 5.17·4-s − 4.84·5-s − 10.2·8-s − 17.5·10-s + 20.1·11-s + 72.2·13-s − 78.6·16-s − 132.·17-s + 76.9·19-s − 25.0·20-s + 73.0·22-s + 22.4·23-s − 101.·25-s + 262.·26-s − 193.·29-s + 89.7·31-s − 203.·32-s − 480.·34-s + 47.9·37-s + 279.·38-s + 49.6·40-s − 3.41·41-s − 168.·43-s + 104.·44-s + 81.5·46-s − 163.·47-s + ⋯
L(s)  = 1  + 1.28·2-s + 0.646·4-s − 0.433·5-s − 0.453·8-s − 0.555·10-s + 0.551·11-s + 1.54·13-s − 1.22·16-s − 1.88·17-s + 0.928·19-s − 0.280·20-s + 0.708·22-s + 0.203·23-s − 0.812·25-s + 1.97·26-s − 1.23·29-s + 0.520·31-s − 1.12·32-s − 2.42·34-s + 0.212·37-s + 1.19·38-s + 0.196·40-s − 0.0130·41-s − 0.597·43-s + 0.356·44-s + 0.261·46-s − 0.506·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 3.62T + 8T^{2} \)
5 \( 1 + 4.84T + 125T^{2} \)
11 \( 1 - 20.1T + 1.33e3T^{2} \)
13 \( 1 - 72.2T + 2.19e3T^{2} \)
17 \( 1 + 132.T + 4.91e3T^{2} \)
19 \( 1 - 76.9T + 6.85e3T^{2} \)
23 \( 1 - 22.4T + 1.21e4T^{2} \)
29 \( 1 + 193.T + 2.43e4T^{2} \)
31 \( 1 - 89.7T + 2.97e4T^{2} \)
37 \( 1 - 47.9T + 5.06e4T^{2} \)
41 \( 1 + 3.41T + 6.89e4T^{2} \)
43 \( 1 + 168.T + 7.95e4T^{2} \)
47 \( 1 + 163.T + 1.03e5T^{2} \)
53 \( 1 + 337.T + 1.48e5T^{2} \)
59 \( 1 + 517.T + 2.05e5T^{2} \)
61 \( 1 - 424.T + 2.26e5T^{2} \)
67 \( 1 + 978.T + 3.00e5T^{2} \)
71 \( 1 - 40.4T + 3.57e5T^{2} \)
73 \( 1 - 482.T + 3.89e5T^{2} \)
79 \( 1 + 1.07e3T + 4.93e5T^{2} \)
83 \( 1 - 811.T + 5.71e5T^{2} \)
89 \( 1 + 997.T + 7.04e5T^{2} \)
97 \( 1 + 1.45e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.902610694020449025877747353626, −8.014007956207692984090194647141, −6.84298500523784964316205995135, −6.25193871213750575220338219837, −5.41930917231721383614577774384, −4.36004551251749559272395527924, −3.85657272479052475639928926622, −2.96356103751232375604462531719, −1.60932577862780477278963758474, 0, 1.60932577862780477278963758474, 2.96356103751232375604462531719, 3.85657272479052475639928926622, 4.36004551251749559272395527924, 5.41930917231721383614577774384, 6.25193871213750575220338219837, 6.84298500523784964316205995135, 8.014007956207692984090194647141, 8.902610694020449025877747353626

Graph of the $Z$-function along the critical line