L(s) = 1 | + (−0.5 + 0.866i)4-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)37-s − 43-s + (−0.5 + 0.866i)52-s + (−0.5 − 0.866i)61-s + 0.999·64-s + (0.5 − 0.866i)67-s + (1 − 1.73i)73-s − 1.99·76-s + (0.5 + 0.866i)79-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)4-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)37-s − 43-s + (−0.5 + 0.866i)52-s + (−0.5 − 0.866i)61-s + 0.999·64-s + (0.5 − 0.866i)67-s + (1 − 1.73i)73-s − 1.99·76-s + (0.5 + 0.866i)79-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.386−0.922i)Λ(1−s)
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.386−0.922i
|
Analytic conductor: |
0.660263 |
Root analytic conductor: |
0.812565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(998,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :0), 0.386−0.922i)
|
Particular Values
L(21) |
≈ |
0.9582765921 |
L(21) |
≈ |
0.9582765921 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(0.5−0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1−T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.799398151879063543687478145738, −9.166609446736128091737023508598, −8.203129434453055279785447843626, −7.81544293117752697062202271445, −6.77859874590492802999931802270, −5.77304106386382234872509942124, −4.87748382551209216218171225784, −3.69302898263756161925257416218, −3.27809509975445112864242636305, −1.59269155017624444001947127724,
0.918045495807824505367668021452, 2.34377151969923676383017593319, 3.71286491415362218107883439601, 4.64587814422967234179196333202, 5.50679243439660228228803765276, 6.25406186689216711603220733478, 7.14402998007331631808971790520, 8.208497512958313171949882930359, 9.035839715759652786799637475376, 9.574302464157638868787733535570