L(s) = 1 | + (−0.5 + 0.866i)4-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)37-s − 43-s + (−0.5 + 0.866i)52-s + (−0.5 − 0.866i)61-s + 0.999·64-s + (0.5 − 0.866i)67-s + (1 − 1.73i)73-s − 1.99·76-s + (0.5 + 0.866i)79-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)4-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)37-s − 43-s + (−0.5 + 0.866i)52-s + (−0.5 − 0.866i)61-s + 0.999·64-s + (0.5 − 0.866i)67-s + (1 − 1.73i)73-s − 1.99·76-s + (0.5 + 0.866i)79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9582765921\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9582765921\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.799398151879063543687478145738, −9.166609446736128091737023508598, −8.203129434453055279785447843626, −7.81544293117752697062202271445, −6.77859874590492802999931802270, −5.77304106386382234872509942124, −4.87748382551209216218171225784, −3.69302898263756161925257416218, −3.27809509975445112864242636305, −1.59269155017624444001947127724,
0.918045495807824505367668021452, 2.34377151969923676383017593319, 3.71286491415362218107883439601, 4.64587814422967234179196333202, 5.50679243439660228228803765276, 6.25406186689216711603220733478, 7.14402998007331631808971790520, 8.208497512958313171949882930359, 9.035839715759652786799637475376, 9.574302464157638868787733535570