L(s) = 1 | + (−0.0747 + 0.997i)4-s + (0.222 + 0.974i)7-s + (1.81 − 0.414i)13-s + (−0.988 − 0.149i)16-s + (−1.68 + 0.974i)19-s + (−0.733 − 0.680i)25-s + (−0.988 + 0.149i)28-s + (1.72 + 0.997i)31-s + (−0.0111 − 0.149i)37-s + (−1.19 + 1.49i)43-s + (−0.900 + 0.433i)49-s + (0.277 + 1.84i)52-s + (1.12 − 0.0841i)61-s + (0.222 − 0.974i)64-s + (0.988 − 1.71i)67-s + ⋯ |
L(s) = 1 | + (−0.0747 + 0.997i)4-s + (0.222 + 0.974i)7-s + (1.81 − 0.414i)13-s + (−0.988 − 0.149i)16-s + (−1.68 + 0.974i)19-s + (−0.733 − 0.680i)25-s + (−0.988 + 0.149i)28-s + (1.72 + 0.997i)31-s + (−0.0111 − 0.149i)37-s + (−1.19 + 1.49i)43-s + (−0.900 + 0.433i)49-s + (0.277 + 1.84i)52-s + (1.12 − 0.0841i)61-s + (0.222 − 0.974i)64-s + (0.988 − 1.71i)67-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.180−0.983i)Λ(1−s)
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.180−0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.180−0.983i
|
Analytic conductor: |
0.660263 |
Root analytic conductor: |
0.812565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(136,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :0), 0.180−0.983i)
|
Particular Values
L(21) |
≈ |
1.075846865 |
L(21) |
≈ |
1.075846865 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.222−0.974i)T |
good | 2 | 1+(0.0747−0.997i)T2 |
| 5 | 1+(0.733+0.680i)T2 |
| 11 | 1+(0.826+0.563i)T2 |
| 13 | 1+(−1.81+0.414i)T+(0.900−0.433i)T2 |
| 17 | 1+(−0.365+0.930i)T2 |
| 19 | 1+(1.68−0.974i)T+(0.5−0.866i)T2 |
| 23 | 1+(0.365+0.930i)T2 |
| 29 | 1+(0.623+0.781i)T2 |
| 31 | 1+(−1.72−0.997i)T+(0.5+0.866i)T2 |
| 37 | 1+(0.0111+0.149i)T+(−0.988+0.149i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(1.19−1.49i)T+(−0.222−0.974i)T2 |
| 47 | 1+(−0.0747+0.997i)T2 |
| 53 | 1+(−0.988−0.149i)T2 |
| 59 | 1+(0.733−0.680i)T2 |
| 61 | 1+(−1.12+0.0841i)T+(0.988−0.149i)T2 |
| 67 | 1+(−0.988+1.71i)T+(−0.5−0.866i)T2 |
| 71 | 1+(0.623−0.781i)T2 |
| 73 | 1+(−0.590+0.636i)T+(−0.0747−0.997i)T2 |
| 79 | 1+(0.826+1.43i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(−0.826+0.563i)T2 |
| 97 | 1+0.589iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.998529549131960381130610885977, −8.862232654779607006235516407870, −8.291530304148654506061782976767, −8.035879818481224348354495169923, −6.45848012398651784117420106484, −6.14287271740877729442392936564, −4.82243758308665854434312827617, −3.88735371670369938120775058021, −3.01902831265171959151218343778, −1.85379443832162937236185699105,
0.991137069325056654341010841400, 2.15330192963795843913373422387, 3.83385641918393468580019432618, 4.42153385009983797655690119676, 5.52638943562908967838367873167, 6.46123214152476039422857128174, 6.88991208943601164591494960678, 8.257598920143090784653448289670, 8.761462467976784143889616795126, 9.828507970679896327810118952640