L(s) = 1 | + (−0.0747 + 0.997i)4-s + (0.222 + 0.974i)7-s + (1.81 − 0.414i)13-s + (−0.988 − 0.149i)16-s + (−1.68 + 0.974i)19-s + (−0.733 − 0.680i)25-s + (−0.988 + 0.149i)28-s + (1.72 + 0.997i)31-s + (−0.0111 − 0.149i)37-s + (−1.19 + 1.49i)43-s + (−0.900 + 0.433i)49-s + (0.277 + 1.84i)52-s + (1.12 − 0.0841i)61-s + (0.222 − 0.974i)64-s + (0.988 − 1.71i)67-s + ⋯ |
L(s) = 1 | + (−0.0747 + 0.997i)4-s + (0.222 + 0.974i)7-s + (1.81 − 0.414i)13-s + (−0.988 − 0.149i)16-s + (−1.68 + 0.974i)19-s + (−0.733 − 0.680i)25-s + (−0.988 + 0.149i)28-s + (1.72 + 0.997i)31-s + (−0.0111 − 0.149i)37-s + (−1.19 + 1.49i)43-s + (−0.900 + 0.433i)49-s + (0.277 + 1.84i)52-s + (1.12 − 0.0841i)61-s + (0.222 − 0.974i)64-s + (0.988 − 1.71i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.180 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.180 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.075846865\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.075846865\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.222 - 0.974i)T \) |
good | 2 | \( 1 + (0.0747 - 0.997i)T^{2} \) |
| 5 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 11 | \( 1 + (0.826 + 0.563i)T^{2} \) |
| 13 | \( 1 + (-1.81 + 0.414i)T + (0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 19 | \( 1 + (1.68 - 0.974i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.365 + 0.930i)T^{2} \) |
| 29 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-1.72 - 0.997i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.0111 + 0.149i)T + (-0.988 + 0.149i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (1.19 - 1.49i)T + (-0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 53 | \( 1 + (-0.988 - 0.149i)T^{2} \) |
| 59 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 61 | \( 1 + (-1.12 + 0.0841i)T + (0.988 - 0.149i)T^{2} \) |
| 67 | \( 1 + (-0.988 + 1.71i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.590 + 0.636i)T + (-0.0747 - 0.997i)T^{2} \) |
| 79 | \( 1 + (0.826 + 1.43i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 97 | \( 1 + 0.589iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.998529549131960381130610885977, −8.862232654779607006235516407870, −8.291530304148654506061782976767, −8.035879818481224348354495169923, −6.45848012398651784117420106484, −6.14287271740877729442392936564, −4.82243758308665854434312827617, −3.88735371670369938120775058021, −3.01902831265171959151218343778, −1.85379443832162937236185699105,
0.991137069325056654341010841400, 2.15330192963795843913373422387, 3.83385641918393468580019432618, 4.42153385009983797655690119676, 5.52638943562908967838367873167, 6.46123214152476039422857128174, 6.88991208943601164591494960678, 8.257598920143090784653448289670, 8.761462467976784143889616795126, 9.828507970679896327810118952640