L(s) = 1 | + (−0.365 − 0.930i)4-s + (0.900 − 0.433i)7-s + (−0.255 − 0.531i)13-s + (−0.733 + 0.680i)16-s + (0.751 − 0.433i)19-s + (0.826 − 0.563i)25-s + (−0.733 − 0.680i)28-s + (−1.61 − 0.930i)31-s + (−0.266 + 0.680i)37-s + (0.0332 + 0.145i)43-s + (0.623 − 0.781i)49-s + (−0.400 + 0.432i)52-s + (0.277 + 0.108i)61-s + (0.900 + 0.433i)64-s + (0.733 − 1.26i)67-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.930i)4-s + (0.900 − 0.433i)7-s + (−0.255 − 0.531i)13-s + (−0.733 + 0.680i)16-s + (0.751 − 0.433i)19-s + (0.826 − 0.563i)25-s + (−0.733 − 0.680i)28-s + (−1.61 − 0.930i)31-s + (−0.266 + 0.680i)37-s + (0.0332 + 0.145i)43-s + (0.623 − 0.781i)49-s + (−0.400 + 0.432i)52-s + (0.277 + 0.108i)61-s + (0.900 + 0.433i)64-s + (0.733 − 1.26i)67-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.304+0.952i)Λ(1−s)
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.304+0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.304+0.952i
|
Analytic conductor: |
0.660263 |
Root analytic conductor: |
0.812565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(1270,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :0), 0.304+0.952i)
|
Particular Values
L(21) |
≈ |
1.046968824 |
L(21) |
≈ |
1.046968824 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.900+0.433i)T |
good | 2 | 1+(0.365+0.930i)T2 |
| 5 | 1+(−0.826+0.563i)T2 |
| 11 | 1+(−0.988−0.149i)T2 |
| 13 | 1+(0.255+0.531i)T+(−0.623+0.781i)T2 |
| 17 | 1+(−0.955+0.294i)T2 |
| 19 | 1+(−0.751+0.433i)T+(0.5−0.866i)T2 |
| 23 | 1+(0.955+0.294i)T2 |
| 29 | 1+(−0.222+0.974i)T2 |
| 31 | 1+(1.61+0.930i)T+(0.5+0.866i)T2 |
| 37 | 1+(0.266−0.680i)T+(−0.733−0.680i)T2 |
| 41 | 1+(0.900+0.433i)T2 |
| 43 | 1+(−0.0332−0.145i)T+(−0.900+0.433i)T2 |
| 47 | 1+(−0.365−0.930i)T2 |
| 53 | 1+(−0.733+0.680i)T2 |
| 59 | 1+(−0.826−0.563i)T2 |
| 61 | 1+(−0.277−0.108i)T+(0.733+0.680i)T2 |
| 67 | 1+(−0.733+1.26i)T+(−0.5−0.866i)T2 |
| 71 | 1+(−0.222−0.974i)T2 |
| 73 | 1+(0.880+1.29i)T+(−0.365+0.930i)T2 |
| 79 | 1+(−0.988−1.71i)T+(−0.5+0.866i)T2 |
| 83 | 1+(−0.623−0.781i)T2 |
| 89 | 1+(0.988−0.149i)T2 |
| 97 | 1−1.99iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.675838861468718591496573939771, −8.966334859456534613954685250843, −8.049383399088252810255657580691, −7.26824637387688242128031184313, −6.29094244363363328176405738027, −5.26091075396337235046442407216, −4.81922782634146292338930599664, −3.70062011242145264556648357203, −2.23076976950991820046287219988, −0.983877278254931319822383704258,
1.75252778204371813879674385188, 2.98790083069800652164428781202, 3.96276922140315039872895976016, 4.91148072648213232272629511347, 5.62008423436526011214105108723, 7.06519947997700995730717498070, 7.49355768411657589788505623737, 8.535699455811223537970473250494, 8.932848126999100481305464682994, 9.823462040418878059960022066535