L(s) = 1 | + (−0.365 − 0.930i)4-s + (0.900 − 0.433i)7-s + (−0.255 − 0.531i)13-s + (−0.733 + 0.680i)16-s + (0.751 − 0.433i)19-s + (0.826 − 0.563i)25-s + (−0.733 − 0.680i)28-s + (−1.61 − 0.930i)31-s + (−0.266 + 0.680i)37-s + (0.0332 + 0.145i)43-s + (0.623 − 0.781i)49-s + (−0.400 + 0.432i)52-s + (0.277 + 0.108i)61-s + (0.900 + 0.433i)64-s + (0.733 − 1.26i)67-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.930i)4-s + (0.900 − 0.433i)7-s + (−0.255 − 0.531i)13-s + (−0.733 + 0.680i)16-s + (0.751 − 0.433i)19-s + (0.826 − 0.563i)25-s + (−0.733 − 0.680i)28-s + (−1.61 − 0.930i)31-s + (−0.266 + 0.680i)37-s + (0.0332 + 0.145i)43-s + (0.623 − 0.781i)49-s + (−0.400 + 0.432i)52-s + (0.277 + 0.108i)61-s + (0.900 + 0.433i)64-s + (0.733 − 1.26i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.304 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.304 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.046968824\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.046968824\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.900 + 0.433i)T \) |
good | 2 | \( 1 + (0.365 + 0.930i)T^{2} \) |
| 5 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 11 | \( 1 + (-0.988 - 0.149i)T^{2} \) |
| 13 | \( 1 + (0.255 + 0.531i)T + (-0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 19 | \( 1 + (-0.751 + 0.433i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.955 + 0.294i)T^{2} \) |
| 29 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (1.61 + 0.930i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.266 - 0.680i)T + (-0.733 - 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (-0.0332 - 0.145i)T + (-0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 53 | \( 1 + (-0.733 + 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 61 | \( 1 + (-0.277 - 0.108i)T + (0.733 + 0.680i)T^{2} \) |
| 67 | \( 1 + (-0.733 + 1.26i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (0.880 + 1.29i)T + (-0.365 + 0.930i)T^{2} \) |
| 79 | \( 1 + (-0.988 - 1.71i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 97 | \( 1 - 1.99iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.675838861468718591496573939771, −8.966334859456534613954685250843, −8.049383399088252810255657580691, −7.26824637387688242128031184313, −6.29094244363363328176405738027, −5.26091075396337235046442407216, −4.81922782634146292338930599664, −3.70062011242145264556648357203, −2.23076976950991820046287219988, −0.983877278254931319822383704258,
1.75252778204371813879674385188, 2.98790083069800652164428781202, 3.96276922140315039872895976016, 4.91148072648213232272629511347, 5.62008423436526011214105108723, 7.06519947997700995730717498070, 7.49355768411657589788505623737, 8.535699455811223537970473250494, 8.932848126999100481305464682994, 9.823462040418878059960022066535