L(s) = 1 | − 1.93·2-s + 1.25·3-s + 1.74·4-s + 1.68·5-s − 2.42·6-s − 7-s + 0.491·8-s − 1.42·9-s − 3.25·10-s + 4.93·11-s + 2.18·12-s + 1.68·13-s + 1.93·14-s + 2.10·15-s − 4.44·16-s + 5.44·17-s + 2.76·18-s + 19-s + 2.93·20-s − 1.25·21-s − 9.55·22-s + 1.81·23-s + 0.616·24-s − 2.17·25-s − 3.25·26-s − 5.55·27-s − 1.74·28-s + ⋯ |
L(s) = 1 | − 1.36·2-s + 0.724·3-s + 0.872·4-s + 0.751·5-s − 0.990·6-s − 0.377·7-s + 0.173·8-s − 0.475·9-s − 1.02·10-s + 1.48·11-s + 0.632·12-s + 0.466·13-s + 0.517·14-s + 0.544·15-s − 1.11·16-s + 1.32·17-s + 0.651·18-s + 0.229·19-s + 0.656·20-s − 0.273·21-s − 2.03·22-s + 0.377·23-s + 0.125·24-s − 0.434·25-s − 0.638·26-s − 1.06·27-s − 0.329·28-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7774053091 |
L(21) |
≈ |
0.7774053091 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+T |
| 19 | 1−T |
good | 2 | 1+1.93T+2T2 |
| 3 | 1−1.25T+3T2 |
| 5 | 1−1.68T+5T2 |
| 11 | 1−4.93T+11T2 |
| 13 | 1−1.68T+13T2 |
| 17 | 1−5.44T+17T2 |
| 23 | 1−1.81T+23T2 |
| 29 | 1+7.78T+29T2 |
| 31 | 1+1.57T+31T2 |
| 37 | 1+7.55T+37T2 |
| 41 | 1+6.46T+41T2 |
| 43 | 1−3.36T+43T2 |
| 47 | 1+0.697T+47T2 |
| 53 | 1−5.12T+53T2 |
| 59 | 1+5.17T+59T2 |
| 61 | 1+10.0T+61T2 |
| 67 | 1+9.31T+67T2 |
| 71 | 1−8.06T+71T2 |
| 73 | 1−10.9T+73T2 |
| 79 | 1−4.37T+79T2 |
| 83 | 1−4.87T+83T2 |
| 89 | 1+18.2T+89T2 |
| 97 | 1+2.95T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.56634883368263537699149278017, −12.03823919823389430923938268075, −10.87675970720059046038391015698, −9.625349903951408654685580415956, −9.257980137925230042967412683471, −8.295451240516401268120366927673, −7.11599402563312628711147577901, −5.79213972495540220098003968585, −3.53269569005732218897252869397, −1.66395853662428755759686857237,
1.66395853662428755759686857237, 3.53269569005732218897252869397, 5.79213972495540220098003968585, 7.11599402563312628711147577901, 8.295451240516401268120366927673, 9.257980137925230042967412683471, 9.625349903951408654685580415956, 10.87675970720059046038391015698, 12.03823919823389430923938268075, 13.56634883368263537699149278017