L(s) = 1 | + (−0.110 + 0.626i)2-s + (−2.42 + 0.882i)3-s + (1.49 + 0.545i)4-s + (−2.52 + 0.919i)5-s + (−0.284 − 1.61i)6-s + (−1.69 − 2.03i)7-s + (−1.14 + 1.98i)8-s + (2.80 − 2.34i)9-s + (−0.296 − 1.68i)10-s − 3.98·11-s − 4.11·12-s + (0.720 + 4.08i)13-s + (1.45 − 0.836i)14-s + (5.31 − 4.45i)15-s + (1.33 + 1.11i)16-s + (−1.31 − 1.10i)17-s + ⋯ |
L(s) = 1 | + (−0.0780 + 0.442i)2-s + (−1.39 + 0.509i)3-s + (0.749 + 0.272i)4-s + (−1.12 + 0.411i)5-s + (−0.116 − 0.659i)6-s + (−0.640 − 0.768i)7-s + (−0.404 + 0.700i)8-s + (0.933 − 0.783i)9-s + (−0.0938 − 0.532i)10-s − 1.20·11-s − 1.18·12-s + (0.199 + 1.13i)13-s + (0.390 − 0.223i)14-s + (1.37 − 1.15i)15-s + (0.332 + 0.279i)16-s + (−0.319 − 0.268i)17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(−0.996−0.0877i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(−0.996−0.0877i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
−0.996−0.0877i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), −0.996−0.0877i)
|
Particular Values
L(1) |
≈ |
0.0168430+0.383290i |
L(21) |
≈ |
0.0168430+0.383290i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(1.69+2.03i)T |
| 19 | 1+(−2.13−3.80i)T |
good | 2 | 1+(0.110−0.626i)T+(−1.87−0.684i)T2 |
| 3 | 1+(2.42−0.882i)T+(2.29−1.92i)T2 |
| 5 | 1+(2.52−0.919i)T+(3.83−3.21i)T2 |
| 11 | 1+3.98T+11T2 |
| 13 | 1+(−0.720−4.08i)T+(−12.2+4.44i)T2 |
| 17 | 1+(1.31+1.10i)T+(2.95+16.7i)T2 |
| 23 | 1+(−0.354−2.01i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−8.63−3.14i)T+(22.2+18.6i)T2 |
| 31 | 1+(−1.67+2.89i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.43−5.95i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.629−3.56i)T+(−38.5−14.0i)T2 |
| 43 | 1+(7.59+6.37i)T+(7.46+42.3i)T2 |
| 47 | 1+(1.11−0.936i)T+(8.16−46.2i)T2 |
| 53 | 1+(−0.133−0.0487i)T+(40.6+34.0i)T2 |
| 59 | 1+(1.61+1.35i)T+(10.2+58.1i)T2 |
| 61 | 1+(1.73+9.85i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−1.22−6.92i)T+(−62.9+22.9i)T2 |
| 71 | 1+(8.81+7.39i)T+(12.3+69.9i)T2 |
| 73 | 1+(−12.5+4.57i)T+(55.9−46.9i)T2 |
| 79 | 1+(2.08+1.75i)T+(13.7+77.7i)T2 |
| 83 | 1+(−3.85−6.68i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−4.11−1.49i)T+(68.1+57.2i)T2 |
| 97 | 1+(10.1−3.69i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.78153951619973267278148939821, −12.26778450217898075492397718594, −11.61989542257305096258517085500, −10.86530110976043379584402400342, −10.05869522665526268888603883119, −8.098862794822776748885324795213, −7.06505440816487603111965659181, −6.31755340694326939405608598081, −4.85669018064037893079840184673, −3.42315569812514185160298222819,
0.45318034887364618017730142477, 2.90936860842898806370419637011, 5.06686249739886785167651612175, 6.07961062500155336879040819426, 7.15027976872103611343246955203, 8.373909189517295618746886694893, 10.17297321395103779258396751350, 10.94749285640347547076106267377, 11.85078093946280092350143995657, 12.40168373544091742224439772108