L(s) = 1 | + (−0.181 + 1.03i)2-s + (−1.81 + 0.660i)3-s + (0.849 + 0.309i)4-s + (3.78 − 1.37i)5-s + (−0.351 − 1.99i)6-s + (−1.36 + 2.26i)7-s + (−1.52 + 2.63i)8-s + (0.562 − 0.472i)9-s + (0.732 + 4.15i)10-s − 0.481·11-s − 1.74·12-s + (−0.256 − 1.45i)13-s + (−2.08 − 1.82i)14-s + (−5.96 + 5.00i)15-s + (−1.05 − 0.884i)16-s + (3.70 + 3.10i)17-s + ⋯ |
L(s) = 1 | + (−0.128 + 0.729i)2-s + (−1.04 + 0.381i)3-s + (0.424 + 0.154i)4-s + (1.69 − 0.616i)5-s + (−0.143 − 0.813i)6-s + (−0.516 + 0.856i)7-s + (−0.537 + 0.930i)8-s + (0.187 − 0.157i)9-s + (0.231 + 1.31i)10-s − 0.145·11-s − 0.504·12-s + (−0.0710 − 0.402i)13-s + (−0.557 − 0.486i)14-s + (−1.53 + 1.29i)15-s + (−0.263 − 0.221i)16-s + (0.898 + 0.754i)17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(0.0115−0.999i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(0.0115−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
0.0115−0.999i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), 0.0115−0.999i)
|
Particular Values
L(1) |
≈ |
0.709120+0.700954i |
L(21) |
≈ |
0.709120+0.700954i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(1.36−2.26i)T |
| 19 | 1+(1.09+4.21i)T |
good | 2 | 1+(0.181−1.03i)T+(−1.87−0.684i)T2 |
| 3 | 1+(1.81−0.660i)T+(2.29−1.92i)T2 |
| 5 | 1+(−3.78+1.37i)T+(3.83−3.21i)T2 |
| 11 | 1+0.481T+11T2 |
| 13 | 1+(0.256+1.45i)T+(−12.2+4.44i)T2 |
| 17 | 1+(−3.70−3.10i)T+(2.95+16.7i)T2 |
| 23 | 1+(−0.0983−0.558i)T+(−21.6+7.86i)T2 |
| 29 | 1+(4.78+1.74i)T+(22.2+18.6i)T2 |
| 31 | 1+(−4.12+7.14i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.321+0.556i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.283−1.60i)T+(−38.5−14.0i)T2 |
| 43 | 1+(4.52+3.79i)T+(7.46+42.3i)T2 |
| 47 | 1+(0.654−0.549i)T+(8.16−46.2i)T2 |
| 53 | 1+(−2.64−0.963i)T+(40.6+34.0i)T2 |
| 59 | 1+(−3.30−2.77i)T+(10.2+58.1i)T2 |
| 61 | 1+(2.27+12.9i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−0.946−5.36i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−6.78−5.69i)T+(12.3+69.9i)T2 |
| 73 | 1+(10.0−3.64i)T+(55.9−46.9i)T2 |
| 79 | 1+(−9.04−7.59i)T+(13.7+77.7i)T2 |
| 83 | 1+(7.46+12.9i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.39−2.32i)T+(68.1+57.2i)T2 |
| 97 | 1+(13.1−4.78i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39867509151283495999792386282, −12.52237813749737585157840925683, −11.49505184624107080072568228977, −10.31555891740263418353826002287, −9.407594537764886632129076574598, −8.268890888911534160684817286950, −6.49110964624756277335644775626, −5.77496769564879182526838766465, −5.24702743911382237143202297080, −2.41849859496603097292244072082,
1.45006138188970461248772449061, 3.09604916929483327081351925587, 5.50625001232510902609956550999, 6.40486322185091118388057467123, 7.06134425229595663454507930888, 9.465074899438786998036705956997, 10.23052579274038725599255880673, 10.78749016438028183577731378727, 11.90456803082906850217461763596, 12.80300364166954802938387420019