L(s) = 1 | + (0.143 − 0.248i)2-s − 3.06·3-s + (0.958 + 1.66i)4-s + (1.79 − 3.10i)5-s + (−0.439 + 0.760i)6-s + (2.10 + 1.60i)7-s + 1.12·8-s + 6.39·9-s + (−0.513 − 0.888i)10-s + (1.39 − 2.41i)11-s + (−2.93 − 5.09i)12-s + (0.705 − 1.22i)13-s + (0.700 − 0.291i)14-s + (−5.48 + 9.50i)15-s + (−1.75 + 3.04i)16-s − 2.10·17-s + ⋯ |
L(s) = 1 | + (0.101 − 0.175i)2-s − 1.76·3-s + (0.479 + 0.830i)4-s + (0.800 − 1.38i)5-s + (−0.179 + 0.310i)6-s + (0.794 + 0.607i)7-s + 0.397·8-s + 2.13·9-s + (−0.162 − 0.281i)10-s + (0.420 − 0.727i)11-s + (−0.848 − 1.46i)12-s + (0.195 − 0.338i)13-s + (0.187 − 0.0779i)14-s + (−1.41 + 2.45i)15-s + (−0.439 + 0.760i)16-s − 0.509·17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(0.958+0.284i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(0.958+0.284i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
0.958+0.284i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), 0.958+0.284i)
|
Particular Values
L(1) |
≈ |
0.920427−0.133511i |
L(21) |
≈ |
0.920427−0.133511i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.10−1.60i)T |
| 19 | 1+(−2.60−3.49i)T |
good | 2 | 1+(−0.143+0.248i)T+(−1−1.73i)T2 |
| 3 | 1+3.06T+3T2 |
| 5 | 1+(−1.79+3.10i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.39+2.41i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.705+1.22i)T+(−6.5−11.2i)T2 |
| 17 | 1+2.10T+17T2 |
| 23 | 1+4.91T+23T2 |
| 29 | 1+(−0.941+1.63i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.474−0.822i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.59+6.23i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.31−2.27i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.579−1.00i)T+(−21.5+37.2i)T2 |
| 47 | 1+7.78T+47T2 |
| 53 | 1+(−6.77−11.7i)T+(−26.5+45.8i)T2 |
| 59 | 1+2.99T+59T2 |
| 61 | 1+4.13T+61T2 |
| 67 | 1+(5.42+9.39i)T+(−33.5+58.0i)T2 |
| 71 | 1+(0.00205+0.00355i)T+(−35.5+61.4i)T2 |
| 73 | 1+5.65T+73T2 |
| 79 | 1+(0.322−0.559i)T+(−39.5−68.4i)T2 |
| 83 | 1+4.44T+83T2 |
| 89 | 1+6.57T+89T2 |
| 97 | 1+(−2.26−3.91i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.74990965157924068808909586968, −12.10992156685468570051692405608, −11.50763098783882840420615302626, −10.47847040143564323662563258787, −9.029999511194116280986244074105, −7.88012151193147657256718747482, −6.18983241989298958897813525420, −5.49147390106762532945132093511, −4.35907347511661554483186196866, −1.55144154159546523126369384269,
1.74179882755667794595420274681, 4.61747598304907069939802656591, 5.71588318412209103097100204403, 6.71958497425598866327737939128, 7.10436038939468253846017820449, 9.867451695366802523007048819617, 10.41383191719442953178756380455, 11.23745847813281092447714269995, 11.75032680002974128226520775564, 13.48243211248802222085069878654