L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (0.223 − 0.266i)5-s + (0.866 − 0.5i)8-s + (0.173 − 0.300i)10-s + (−0.592 − 1.62i)13-s + (0.766 − 0.642i)16-s + (−0.524 + 1.43i)17-s + (0.118 − 0.326i)20-s + (0.152 + 0.866i)25-s + (−0.866 − 1.5i)26-s + (−1.62 + 0.939i)29-s + (0.642 − 0.766i)32-s + (−0.266 + 1.50i)34-s + (0.939 − 0.342i)37-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (0.223 − 0.266i)5-s + (0.866 − 0.5i)8-s + (0.173 − 0.300i)10-s + (−0.592 − 1.62i)13-s + (0.766 − 0.642i)16-s + (−0.524 + 1.43i)17-s + (0.118 − 0.326i)20-s + (0.152 + 0.866i)25-s + (−0.866 − 1.5i)26-s + (−1.62 + 0.939i)29-s + (0.642 − 0.766i)32-s + (−0.266 + 1.50i)34-s + (0.939 − 0.342i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.999225199\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.999225199\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.984 + 0.173i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-0.939 + 0.342i)T \) |
good | 5 | \( 1 + (-0.223 + 0.266i)T + (-0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.592 + 1.62i)T + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.524 - 1.43i)T + (-0.766 - 0.642i)T^{2} \) |
| 19 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (1.62 - 0.939i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-1.20 + 0.439i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1.32 - 1.11i)T + (0.173 - 0.984i)T^{2} \) |
| 59 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.233 + 0.642i)T + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (0.984 + 1.17i)T + (-0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (0.592 + 0.342i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.904954013899411001754664175730, −9.024052553641248413471286048354, −7.85082301808911264453205433688, −7.31185058835136623526987538299, −6.04020769334551485298489728345, −5.61941314543059012488020025323, −4.66301244424118899099197730439, −3.68261977244478790353354280985, −2.74101537663210139117901299788, −1.52962721299531859093282589190,
2.01220736707903967828861421397, 2.77959075112200319137318246810, 4.11679521970029403666211294793, 4.68724811624372878095831495828, 5.72629960985783079780850624330, 6.62649344902658929859756363844, 7.15047965132912870438780036123, 8.032015971377623711747054819289, 9.261816434328694850023014371229, 9.803799589969373007668376549092