L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (0.223 − 0.266i)5-s + (0.866 − 0.5i)8-s + (0.173 − 0.300i)10-s + (−0.592 − 1.62i)13-s + (0.766 − 0.642i)16-s + (−0.524 + 1.43i)17-s + (0.118 − 0.326i)20-s + (0.152 + 0.866i)25-s + (−0.866 − 1.5i)26-s + (−1.62 + 0.939i)29-s + (0.642 − 0.766i)32-s + (−0.266 + 1.50i)34-s + (0.939 − 0.342i)37-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (0.223 − 0.266i)5-s + (0.866 − 0.5i)8-s + (0.173 − 0.300i)10-s + (−0.592 − 1.62i)13-s + (0.766 − 0.642i)16-s + (−0.524 + 1.43i)17-s + (0.118 − 0.326i)20-s + (0.152 + 0.866i)25-s + (−0.866 − 1.5i)26-s + (−1.62 + 0.939i)29-s + (0.642 − 0.766i)32-s + (−0.266 + 1.50i)34-s + (0.939 − 0.342i)37-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.815+0.578i)Λ(1−s)
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.815+0.578i)Λ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
0.815+0.578i
|
Analytic conductor: |
0.664754 |
Root analytic conductor: |
0.815324 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(1027,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :0), 0.815+0.578i)
|
Particular Values
L(21) |
≈ |
1.999225199 |
L(21) |
≈ |
1.999225199 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.984+0.173i)T |
| 3 | 1 |
| 37 | 1+(−0.939+0.342i)T |
good | 5 | 1+(−0.223+0.266i)T+(−0.173−0.984i)T2 |
| 7 | 1+(−0.173−0.984i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.592+1.62i)T+(−0.766+0.642i)T2 |
| 17 | 1+(0.524−1.43i)T+(−0.766−0.642i)T2 |
| 19 | 1+(−0.939−0.342i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+(1.62−0.939i)T+(0.5−0.866i)T2 |
| 31 | 1+T2 |
| 41 | 1+(−1.20+0.439i)T+(0.766−0.642i)T2 |
| 43 | 1+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(1.32−1.11i)T+(0.173−0.984i)T2 |
| 59 | 1+(0.173−0.984i)T2 |
| 61 | 1+(0.233+0.642i)T+(−0.766+0.642i)T2 |
| 67 | 1+(−0.173−0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+T+T2 |
| 79 | 1+(0.173+0.984i)T2 |
| 83 | 1+(−0.766−0.642i)T2 |
| 89 | 1+(0.984+1.17i)T+(−0.173+0.984i)T2 |
| 97 | 1+(0.592+0.342i)T+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.904954013899411001754664175730, −9.024052553641248413471286048354, −7.85082301808911264453205433688, −7.31185058835136623526987538299, −6.04020769334551485298489728345, −5.61941314543059012488020025323, −4.66301244424118899099197730439, −3.68261977244478790353354280985, −2.74101537663210139117901299788, −1.52962721299531859093282589190,
2.01220736707903967828861421397, 2.77959075112200319137318246810, 4.11679521970029403666211294793, 4.68724811624372878095831495828, 5.72629960985783079780850624330, 6.62649344902658929859756363844, 7.15047965132912870438780036123, 8.032015971377623711747054819289, 9.261816434328694850023014371229, 9.803799589969373007668376549092