L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + 1.41i·5-s + 2i·7-s + (0.707 − 0.707i)8-s + (1.00 − 1.00i)10-s + (1.41 − 1.41i)14-s − 1.00·16-s − 1.41i·17-s − 1.41·20-s − 1.41·23-s − 1.00·25-s − 2.00·28-s + 1.41i·29-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + 1.41i·5-s + 2i·7-s + (0.707 − 0.707i)8-s + (1.00 − 1.00i)10-s + (1.41 − 1.41i)14-s − 1.00·16-s − 1.41i·17-s − 1.41·20-s − 1.41·23-s − 1.00·25-s − 2.00·28-s + 1.41i·29-s + (0.707 + 0.707i)32-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)−iΛ(1−s)
Λ(s)=(=(1332s/2ΓC(s)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
−i
|
Analytic conductor: |
0.664754 |
Root analytic conductor: |
0.815324 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(739,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :0), −i)
|
Particular Values
L(21) |
≈ |
0.6602424508 |
L(21) |
≈ |
0.6602424508 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 37 | 1−T |
good | 5 | 1−1.41iT−T2 |
| 7 | 1−2iT−T2 |
| 11 | 1−T2 |
| 13 | 1−T2 |
| 17 | 1+1.41iT−T2 |
| 19 | 1+T2 |
| 23 | 1+1.41T+T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1−1.41T+T2 |
| 61 | 1−T2 |
| 67 | 1+2iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1+T2 |
| 83 | 1−T2 |
| 89 | 1−1.41iT−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.892056536591717787071047078648, −9.371386255470186008935881934893, −8.571377289541421886647726263158, −7.74331922563593644290663017934, −6.85386042430630659094192996300, −6.05324551244972753635695859349, −4.97076956644728292778138433325, −3.46361225721334591699090925779, −2.70425552170417996162447736291, −2.10248082468340332890912845936,
0.71403658330381082758101991000, 1.72900014117092613444099523696, 4.10672817019103064091094510561, 4.35000340292243973979457524416, 5.60515086101696016820708607005, 6.39576061096915889048739935070, 7.40190470981591793843066613870, 8.081127869578809371764089097926, 8.533047380232175134344017996767, 9.758375538032464746146122612807