L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + 1.41i·5-s + 2i·7-s + (0.707 − 0.707i)8-s + (1.00 − 1.00i)10-s + (1.41 − 1.41i)14-s − 1.00·16-s − 1.41i·17-s − 1.41·20-s − 1.41·23-s − 1.00·25-s − 2.00·28-s + 1.41i·29-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + 1.41i·5-s + 2i·7-s + (0.707 − 0.707i)8-s + (1.00 − 1.00i)10-s + (1.41 − 1.41i)14-s − 1.00·16-s − 1.41i·17-s − 1.41·20-s − 1.41·23-s − 1.00·25-s − 2.00·28-s + 1.41i·29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6602424508\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6602424508\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 - T \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 - 2iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 1.41iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 - 1.41iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - 1.41T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.892056536591717787071047078648, −9.371386255470186008935881934893, −8.571377289541421886647726263158, −7.74331922563593644290663017934, −6.85386042430630659094192996300, −6.05324551244972753635695859349, −4.97076956644728292778138433325, −3.46361225721334591699090925779, −2.70425552170417996162447736291, −2.10248082468340332890912845936,
0.71403658330381082758101991000, 1.72900014117092613444099523696, 4.10672817019103064091094510561, 4.35000340292243973979457524416, 5.60515086101696016820708607005, 6.39576061096915889048739935070, 7.40190470981591793843066613870, 8.081127869578809371764089097926, 8.533047380232175134344017996767, 9.758375538032464746146122612807