Properties

Label 2-1332-148.147-c0-0-2
Degree 22
Conductor 13321332
Sign i-i
Analytic cond. 0.6647540.664754
Root an. cond. 0.8153240.815324
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s − 1.41i·5-s + 2i·7-s + (−0.707 + 0.707i)8-s + (1.00 − 1.00i)10-s + (−1.41 + 1.41i)14-s − 1.00·16-s + 1.41i·17-s + 1.41·20-s + 1.41·23-s − 1.00·25-s − 2.00·28-s − 1.41i·29-s + (−0.707 − 0.707i)32-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s − 1.41i·5-s + 2i·7-s + (−0.707 + 0.707i)8-s + (1.00 − 1.00i)10-s + (−1.41 + 1.41i)14-s − 1.00·16-s + 1.41i·17-s + 1.41·20-s + 1.41·23-s − 1.00·25-s − 2.00·28-s − 1.41i·29-s + (−0.707 − 0.707i)32-s + ⋯

Functional equation

Λ(s)=(1332s/2ΓC(s)L(s)=(iΛ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1332s/2ΓC(s)L(s)=(iΛ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13321332    =    2232372^{2} \cdot 3^{2} \cdot 37
Sign: i-i
Analytic conductor: 0.6647540.664754
Root analytic conductor: 0.8153240.815324
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1332(739,)\chi_{1332} (739, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1332, ( :0), i)(2,\ 1332,\ (\ :0),\ -i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.4971822891.497182289
L(12)L(\frac12) \approx 1.4971822891.497182289
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
3 1 1
37 1T 1 - T
good5 1+1.41iTT2 1 + 1.41iT - T^{2}
7 12iTT2 1 - 2iT - T^{2}
11 1T2 1 - T^{2}
13 1T2 1 - T^{2}
17 11.41iTT2 1 - 1.41iT - T^{2}
19 1+T2 1 + T^{2}
23 11.41T+T2 1 - 1.41T + T^{2}
29 1+1.41iTT2 1 + 1.41iT - T^{2}
31 1+T2 1 + T^{2}
41 1+T2 1 + T^{2}
43 1+T2 1 + T^{2}
47 1T2 1 - T^{2}
53 1+T2 1 + T^{2}
59 1+1.41T+T2 1 + 1.41T + T^{2}
61 1T2 1 - T^{2}
67 1+2iTT2 1 + 2iT - T^{2}
71 1T2 1 - T^{2}
73 1+T2 1 + T^{2}
79 1+T2 1 + T^{2}
83 1T2 1 - T^{2}
89 1+1.41iTT2 1 + 1.41iT - T^{2}
97 1T2 1 - T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.536514021284968627549872751522, −8.960838945991013022801378775495, −8.414778554632027298497333622971, −7.80162547623979677858169270845, −6.31494445234611737460733423633, −5.83519610973586499523029156412, −5.06465265240301241344898402296, −4.39234271263682380976384369493, −3.07719660515469963840583617553, −1.93885816684015931478909345699, 1.11343943498100243464676815912, 2.77612591838872342442985791975, 3.36725699574225717923528342956, 4.30956838860535088509575402938, 5.16834423345759994140862797861, 6.54000686327996443523670903605, 7.00585498757766112714450620749, 7.56839259189705911656198883057, 9.188191971362504663544386408686, 9.989054943683312493424151725686

Graph of the ZZ-function along the critical line