L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s − 1.41i·5-s + 2i·7-s + (−0.707 + 0.707i)8-s + (1.00 − 1.00i)10-s + (−1.41 + 1.41i)14-s − 1.00·16-s + 1.41i·17-s + 1.41·20-s + 1.41·23-s − 1.00·25-s − 2.00·28-s − 1.41i·29-s + (−0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s − 1.41i·5-s + 2i·7-s + (−0.707 + 0.707i)8-s + (1.00 − 1.00i)10-s + (−1.41 + 1.41i)14-s − 1.00·16-s + 1.41i·17-s + 1.41·20-s + 1.41·23-s − 1.00·25-s − 2.00·28-s − 1.41i·29-s + (−0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.497182289\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.497182289\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 - T \) |
good | 5 | \( 1 + 1.41iT - T^{2} \) |
| 7 | \( 1 - 2iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - 1.41iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.41T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.536514021284968627549872751522, −8.960838945991013022801378775495, −8.414778554632027298497333622971, −7.80162547623979677858169270845, −6.31494445234611737460733423633, −5.83519610973586499523029156412, −5.06465265240301241344898402296, −4.39234271263682380976384369493, −3.07719660515469963840583617553, −1.93885816684015931478909345699,
1.11343943498100243464676815912, 2.77612591838872342442985791975, 3.36725699574225717923528342956, 4.30956838860535088509575402938, 5.16834423345759994140862797861, 6.54000686327996443523670903605, 7.00585498757766112714450620749, 7.56839259189705911656198883057, 9.188191971362504663544386408686, 9.989054943683312493424151725686