L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.448 − 1.67i)5-s + (0.707 − 0.707i)8-s + 1.73·10-s + (−1.36 + 0.366i)13-s + (0.500 + 0.866i)16-s + (−1.67 − 0.448i)17-s + (−0.448 + 1.67i)20-s + (−1.73 + 1.00i)25-s − 1.41i·26-s + (−1.22 − 1.22i)29-s + (−0.965 + 0.258i)32-s + (0.866 − 1.50i)34-s + (0.866 + 0.5i)37-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.448 − 1.67i)5-s + (0.707 − 0.707i)8-s + 1.73·10-s + (−1.36 + 0.366i)13-s + (0.500 + 0.866i)16-s + (−1.67 − 0.448i)17-s + (−0.448 + 1.67i)20-s + (−1.73 + 1.00i)25-s − 1.41i·26-s + (−1.22 − 1.22i)29-s + (−0.965 + 0.258i)32-s + (0.866 − 1.50i)34-s + (0.866 + 0.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.232 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.232 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3769364725\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3769364725\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.448 + 1.67i)T + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (1.67 + 0.448i)T + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.407150202018582992376092508503, −8.710462397117497720031738115122, −8.010002189661129383652961922912, −7.28528473319063735079488556948, −6.35254655164834961716952533002, −5.22615856690990462996530383655, −4.70605981670910318006786091409, −4.03557955053383243162936116963, −2.00121290385549564476465688502, −0.32884731423221698640502002362,
2.15025920554857763288385247919, 2.82085664481829600162904896979, 3.77895612041739039741648567862, 4.65987313192819089878180434369, 5.94090146894775108878910821304, 7.19263550311315262022211589683, 7.42176654464588595858812208694, 8.599221211509861176245769951979, 9.432606590090073249489692115928, 10.30244033008582094153941791751