L(s) = 1 | + 2-s − 3-s + 4-s − 0.603·5-s − 6-s + 4.55·7-s + 8-s + 9-s − 0.603·10-s + 1.88·11-s − 12-s + 0.332·13-s + 4.55·14-s + 0.603·15-s + 16-s − 1.68·17-s + 18-s + 2.93·19-s − 0.603·20-s − 4.55·21-s + 1.88·22-s − 3.43·23-s − 24-s − 4.63·25-s + 0.332·26-s − 27-s + 4.55·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.269·5-s − 0.408·6-s + 1.71·7-s + 0.353·8-s + 0.333·9-s − 0.190·10-s + 0.568·11-s − 0.288·12-s + 0.0923·13-s + 1.21·14-s + 0.155·15-s + 0.250·16-s − 0.408·17-s + 0.235·18-s + 0.672·19-s − 0.134·20-s − 0.993·21-s + 0.401·22-s − 0.715·23-s − 0.204·24-s − 0.927·25-s + 0.0652·26-s − 0.192·27-s + 0.859·28-s + ⋯ |
Λ(s)=(=(1338s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1338s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.601515471 |
L(21) |
≈ |
2.601515471 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 223 | 1+T |
good | 5 | 1+0.603T+5T2 |
| 7 | 1−4.55T+7T2 |
| 11 | 1−1.88T+11T2 |
| 13 | 1−0.332T+13T2 |
| 17 | 1+1.68T+17T2 |
| 19 | 1−2.93T+19T2 |
| 23 | 1+3.43T+23T2 |
| 29 | 1+1.00T+29T2 |
| 31 | 1−4.33T+31T2 |
| 37 | 1+4.29T+37T2 |
| 41 | 1−3.48T+41T2 |
| 43 | 1−12.6T+43T2 |
| 47 | 1−10.1T+47T2 |
| 53 | 1−3.19T+53T2 |
| 59 | 1+11.9T+59T2 |
| 61 | 1−5.00T+61T2 |
| 67 | 1+0.731T+67T2 |
| 71 | 1−2.34T+71T2 |
| 73 | 1−11.5T+73T2 |
| 79 | 1+6.48T+79T2 |
| 83 | 1+11.6T+83T2 |
| 89 | 1+8.85T+89T2 |
| 97 | 1−7.27T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.734136585398062783576585854837, −8.664966153588981180912579827929, −7.78915124849568855131686130105, −7.20888155315302884164913742504, −6.05093966177539974703912322078, −5.40070458532665873952805529729, −4.45926339529163598139365247668, −3.94273131590734835766375946953, −2.32398238771599725211503910593, −1.22520287038283028130514084472,
1.22520287038283028130514084472, 2.32398238771599725211503910593, 3.94273131590734835766375946953, 4.45926339529163598139365247668, 5.40070458532665873952805529729, 6.05093966177539974703912322078, 7.20888155315302884164913742504, 7.78915124849568855131686130105, 8.664966153588981180912579827929, 9.734136585398062783576585854837