Properties

Label 2-1338-1.1-c1-0-19
Degree $2$
Conductor $1338$
Sign $1$
Analytic cond. $10.6839$
Root an. cond. $3.26863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 0.137·5-s + 6-s + 3.14·7-s + 8-s + 9-s + 0.137·10-s + 1.47·11-s + 12-s − 1.75·13-s + 3.14·14-s + 0.137·15-s + 16-s − 4.07·17-s + 18-s + 1.58·19-s + 0.137·20-s + 3.14·21-s + 1.47·22-s + 8.54·23-s + 24-s − 4.98·25-s − 1.75·26-s + 27-s + 3.14·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.0613·5-s + 0.408·6-s + 1.18·7-s + 0.353·8-s + 0.333·9-s + 0.0433·10-s + 0.445·11-s + 0.288·12-s − 0.487·13-s + 0.839·14-s + 0.0354·15-s + 0.250·16-s − 0.989·17-s + 0.235·18-s + 0.364·19-s + 0.0306·20-s + 0.685·21-s + 0.314·22-s + 1.78·23-s + 0.204·24-s − 0.996·25-s − 0.344·26-s + 0.192·27-s + 0.593·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1338\)    =    \(2 \cdot 3 \cdot 223\)
Sign: $1$
Analytic conductor: \(10.6839\)
Root analytic conductor: \(3.26863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.662794529\)
\(L(\frac12)\) \(\approx\) \(3.662794529\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
223 \( 1 - T \)
good5 \( 1 - 0.137T + 5T^{2} \)
7 \( 1 - 3.14T + 7T^{2} \)
11 \( 1 - 1.47T + 11T^{2} \)
13 \( 1 + 1.75T + 13T^{2} \)
17 \( 1 + 4.07T + 17T^{2} \)
19 \( 1 - 1.58T + 19T^{2} \)
23 \( 1 - 8.54T + 23T^{2} \)
29 \( 1 - 1.49T + 29T^{2} \)
31 \( 1 - 0.711T + 31T^{2} \)
37 \( 1 + 6.13T + 37T^{2} \)
41 \( 1 - 4.46T + 41T^{2} \)
43 \( 1 + 4.37T + 43T^{2} \)
47 \( 1 - 3.50T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 + 0.0537T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 - 6.84T + 67T^{2} \)
71 \( 1 + 1.11T + 71T^{2} \)
73 \( 1 - 7.44T + 73T^{2} \)
79 \( 1 + 5.85T + 79T^{2} \)
83 \( 1 - 8.76T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 + 2.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.482151478271728627546117509300, −8.797072599136514013813654424228, −7.894329022570576977701153824573, −7.20404994181485955035389662166, −6.33758118977288126870524415542, −5.10118056948758892882713869020, −4.62173370353024827775953940146, −3.56354993593256664956988032635, −2.46649901818912267667727627398, −1.47676215755220921337298441505, 1.47676215755220921337298441505, 2.46649901818912267667727627398, 3.56354993593256664956988032635, 4.62173370353024827775953940146, 5.10118056948758892882713869020, 6.33758118977288126870524415542, 7.20404994181485955035389662166, 7.894329022570576977701153824573, 8.797072599136514013813654424228, 9.482151478271728627546117509300

Graph of the $Z$-function along the critical line