L(s) = 1 | + 2-s + 3-s + 4-s + 0.137·5-s + 6-s + 3.14·7-s + 8-s + 9-s + 0.137·10-s + 1.47·11-s + 12-s − 1.75·13-s + 3.14·14-s + 0.137·15-s + 16-s − 4.07·17-s + 18-s + 1.58·19-s + 0.137·20-s + 3.14·21-s + 1.47·22-s + 8.54·23-s + 24-s − 4.98·25-s − 1.75·26-s + 27-s + 3.14·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.0613·5-s + 0.408·6-s + 1.18·7-s + 0.353·8-s + 0.333·9-s + 0.0433·10-s + 0.445·11-s + 0.288·12-s − 0.487·13-s + 0.839·14-s + 0.0354·15-s + 0.250·16-s − 0.989·17-s + 0.235·18-s + 0.364·19-s + 0.0306·20-s + 0.685·21-s + 0.314·22-s + 1.78·23-s + 0.204·24-s − 0.996·25-s − 0.344·26-s + 0.192·27-s + 0.593·28-s + ⋯ |
Λ(s)=(=(1338s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1338s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.662794529 |
L(21) |
≈ |
3.662794529 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 223 | 1−T |
good | 5 | 1−0.137T+5T2 |
| 7 | 1−3.14T+7T2 |
| 11 | 1−1.47T+11T2 |
| 13 | 1+1.75T+13T2 |
| 17 | 1+4.07T+17T2 |
| 19 | 1−1.58T+19T2 |
| 23 | 1−8.54T+23T2 |
| 29 | 1−1.49T+29T2 |
| 31 | 1−0.711T+31T2 |
| 37 | 1+6.13T+37T2 |
| 41 | 1−4.46T+41T2 |
| 43 | 1+4.37T+43T2 |
| 47 | 1−3.50T+47T2 |
| 53 | 1+8.57T+53T2 |
| 59 | 1+0.0537T+59T2 |
| 61 | 1+13.6T+61T2 |
| 67 | 1−6.84T+67T2 |
| 71 | 1+1.11T+71T2 |
| 73 | 1−7.44T+73T2 |
| 79 | 1+5.85T+79T2 |
| 83 | 1−8.76T+83T2 |
| 89 | 1−13.7T+89T2 |
| 97 | 1+2.93T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.482151478271728627546117509300, −8.797072599136514013813654424228, −7.894329022570576977701153824573, −7.20404994181485955035389662166, −6.33758118977288126870524415542, −5.10118056948758892882713869020, −4.62173370353024827775953940146, −3.56354993593256664956988032635, −2.46649901818912267667727627398, −1.47676215755220921337298441505,
1.47676215755220921337298441505, 2.46649901818912267667727627398, 3.56354993593256664956988032635, 4.62173370353024827775953940146, 5.10118056948758892882713869020, 6.33758118977288126870524415542, 7.20404994181485955035389662166, 7.894329022570576977701153824573, 8.797072599136514013813654424228, 9.482151478271728627546117509300