L(s) = 1 | + 2-s + 3-s + 4-s − 0.753·5-s + 6-s − 4.69·7-s + 8-s + 9-s − 0.753·10-s − 5.51·11-s + 12-s − 4.13·13-s − 4.69·14-s − 0.753·15-s + 16-s + 4.34·17-s + 18-s + 5.65·19-s − 0.753·20-s − 4.69·21-s − 5.51·22-s − 5.69·23-s + 24-s − 4.43·25-s − 4.13·26-s + 27-s − 4.69·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.336·5-s + 0.408·6-s − 1.77·7-s + 0.353·8-s + 0.333·9-s − 0.238·10-s − 1.66·11-s + 0.288·12-s − 1.14·13-s − 1.25·14-s − 0.194·15-s + 0.250·16-s + 1.05·17-s + 0.235·18-s + 1.29·19-s − 0.168·20-s − 1.02·21-s − 1.17·22-s − 1.18·23-s + 0.204·24-s − 0.886·25-s − 0.811·26-s + 0.192·27-s − 0.886·28-s + ⋯ |
Λ(s)=(=(1338s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1338s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 223 | 1+T |
good | 5 | 1+0.753T+5T2 |
| 7 | 1+4.69T+7T2 |
| 11 | 1+5.51T+11T2 |
| 13 | 1+4.13T+13T2 |
| 17 | 1−4.34T+17T2 |
| 19 | 1−5.65T+19T2 |
| 23 | 1+5.69T+23T2 |
| 29 | 1+0.417T+29T2 |
| 31 | 1+1.55T+31T2 |
| 37 | 1+8.89T+37T2 |
| 41 | 1+9.36T+41T2 |
| 43 | 1−1.04T+43T2 |
| 47 | 1−2.57T+47T2 |
| 53 | 1+8.32T+53T2 |
| 59 | 1−13.0T+59T2 |
| 61 | 1+15.5T+61T2 |
| 67 | 1−11.5T+67T2 |
| 71 | 1−10.0T+71T2 |
| 73 | 1−1.53T+73T2 |
| 79 | 1−6.46T+79T2 |
| 83 | 1−2.93T+83T2 |
| 89 | 1+4.59T+89T2 |
| 97 | 1−3.37T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.567304693105465161281847061193, −8.114976407795153467770668087375, −7.54750257708547906537849086359, −6.83632483959898722439332566181, −5.69450475349190432866064007291, −5.08256965940310810458814162038, −3.66274583474964439446445294686, −3.18437186873917280734313608602, −2.27842930446747794927817682402, 0,
2.27842930446747794927817682402, 3.18437186873917280734313608602, 3.66274583474964439446445294686, 5.08256965940310810458814162038, 5.69450475349190432866064007291, 6.83632483959898722439332566181, 7.54750257708547906537849086359, 8.114976407795153467770668087375, 9.567304693105465161281847061193