Properties

Label 2-1338-1.1-c1-0-36
Degree $2$
Conductor $1338$
Sign $-1$
Analytic cond. $10.6839$
Root an. cond. $3.26863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 0.753·5-s + 6-s − 4.69·7-s + 8-s + 9-s − 0.753·10-s − 5.51·11-s + 12-s − 4.13·13-s − 4.69·14-s − 0.753·15-s + 16-s + 4.34·17-s + 18-s + 5.65·19-s − 0.753·20-s − 4.69·21-s − 5.51·22-s − 5.69·23-s + 24-s − 4.43·25-s − 4.13·26-s + 27-s − 4.69·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.336·5-s + 0.408·6-s − 1.77·7-s + 0.353·8-s + 0.333·9-s − 0.238·10-s − 1.66·11-s + 0.288·12-s − 1.14·13-s − 1.25·14-s − 0.194·15-s + 0.250·16-s + 1.05·17-s + 0.235·18-s + 1.29·19-s − 0.168·20-s − 1.02·21-s − 1.17·22-s − 1.18·23-s + 0.204·24-s − 0.886·25-s − 0.811·26-s + 0.192·27-s − 0.886·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1338\)    =    \(2 \cdot 3 \cdot 223\)
Sign: $-1$
Analytic conductor: \(10.6839\)
Root analytic conductor: \(3.26863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1338,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
223 \( 1 + T \)
good5 \( 1 + 0.753T + 5T^{2} \)
7 \( 1 + 4.69T + 7T^{2} \)
11 \( 1 + 5.51T + 11T^{2} \)
13 \( 1 + 4.13T + 13T^{2} \)
17 \( 1 - 4.34T + 17T^{2} \)
19 \( 1 - 5.65T + 19T^{2} \)
23 \( 1 + 5.69T + 23T^{2} \)
29 \( 1 + 0.417T + 29T^{2} \)
31 \( 1 + 1.55T + 31T^{2} \)
37 \( 1 + 8.89T + 37T^{2} \)
41 \( 1 + 9.36T + 41T^{2} \)
43 \( 1 - 1.04T + 43T^{2} \)
47 \( 1 - 2.57T + 47T^{2} \)
53 \( 1 + 8.32T + 53T^{2} \)
59 \( 1 - 13.0T + 59T^{2} \)
61 \( 1 + 15.5T + 61T^{2} \)
67 \( 1 - 11.5T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 1.53T + 73T^{2} \)
79 \( 1 - 6.46T + 79T^{2} \)
83 \( 1 - 2.93T + 83T^{2} \)
89 \( 1 + 4.59T + 89T^{2} \)
97 \( 1 - 3.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.567304693105465161281847061193, −8.114976407795153467770668087375, −7.54750257708547906537849086359, −6.83632483959898722439332566181, −5.69450475349190432866064007291, −5.08256965940310810458814162038, −3.66274583474964439446445294686, −3.18437186873917280734313608602, −2.27842930446747794927817682402, 0, 2.27842930446747794927817682402, 3.18437186873917280734313608602, 3.66274583474964439446445294686, 5.08256965940310810458814162038, 5.69450475349190432866064007291, 6.83632483959898722439332566181, 7.54750257708547906537849086359, 8.114976407795153467770668087375, 9.567304693105465161281847061193

Graph of the $Z$-function along the critical line