L(s) = 1 | − 2-s + 3-s + 4-s + 1.43·5-s − 6-s − 1.87·7-s − 8-s + 9-s − 1.43·10-s + 5.50·11-s + 12-s + 5.81·13-s + 1.87·14-s + 1.43·15-s + 16-s − 3.16·17-s − 18-s − 0.890·19-s + 1.43·20-s − 1.87·21-s − 5.50·22-s + 1.68·23-s − 24-s − 2.94·25-s − 5.81·26-s + 27-s − 1.87·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.641·5-s − 0.408·6-s − 0.707·7-s − 0.353·8-s + 0.333·9-s − 0.453·10-s + 1.66·11-s + 0.288·12-s + 1.61·13-s + 0.500·14-s + 0.370·15-s + 0.250·16-s − 0.766·17-s − 0.235·18-s − 0.204·19-s + 0.320·20-s − 0.408·21-s − 1.17·22-s + 0.351·23-s − 0.204·24-s − 0.588·25-s − 1.13·26-s + 0.192·27-s − 0.353·28-s + ⋯ |
Λ(s)=(=(1338s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1338s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.788067255 |
L(21) |
≈ |
1.788067255 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 223 | 1+T |
good | 5 | 1−1.43T+5T2 |
| 7 | 1+1.87T+7T2 |
| 11 | 1−5.50T+11T2 |
| 13 | 1−5.81T+13T2 |
| 17 | 1+3.16T+17T2 |
| 19 | 1+0.890T+19T2 |
| 23 | 1−1.68T+23T2 |
| 29 | 1+6.77T+29T2 |
| 31 | 1−2.18T+31T2 |
| 37 | 1−9.53T+37T2 |
| 41 | 1−5.50T+41T2 |
| 43 | 1+9.08T+43T2 |
| 47 | 1−4.43T+47T2 |
| 53 | 1−9.50T+53T2 |
| 59 | 1−14.8T+59T2 |
| 61 | 1+12.3T+61T2 |
| 67 | 1+0.993T+67T2 |
| 71 | 1−4.42T+71T2 |
| 73 | 1−2.32T+73T2 |
| 79 | 1+12.5T+79T2 |
| 83 | 1−15.1T+83T2 |
| 89 | 1+3.41T+89T2 |
| 97 | 1+13.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.394211971808337714366431050190, −8.996571107349110890366579419615, −8.286399491738411070998189275903, −7.13217545175246791281468520635, −6.37382444802770303715476333651, −5.90606153591497433606478854091, −4.16182532945671102375721882002, −3.45923228931344902655259676374, −2.17501530240991508313784865739, −1.15363645918272117607549757472,
1.15363645918272117607549757472, 2.17501530240991508313784865739, 3.45923228931344902655259676374, 4.16182532945671102375721882002, 5.90606153591497433606478854091, 6.37382444802770303715476333651, 7.13217545175246791281468520635, 8.286399491738411070998189275903, 8.996571107349110890366579419615, 9.394211971808337714366431050190