L(s) = 1 | − 2-s + 3-s + 4-s + 1.43·5-s − 6-s − 1.87·7-s − 8-s + 9-s − 1.43·10-s + 5.50·11-s + 12-s + 5.81·13-s + 1.87·14-s + 1.43·15-s + 16-s − 3.16·17-s − 18-s − 0.890·19-s + 1.43·20-s − 1.87·21-s − 5.50·22-s + 1.68·23-s − 24-s − 2.94·25-s − 5.81·26-s + 27-s − 1.87·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.641·5-s − 0.408·6-s − 0.707·7-s − 0.353·8-s + 0.333·9-s − 0.453·10-s + 1.66·11-s + 0.288·12-s + 1.61·13-s + 0.500·14-s + 0.370·15-s + 0.250·16-s − 0.766·17-s − 0.235·18-s − 0.204·19-s + 0.320·20-s − 0.408·21-s − 1.17·22-s + 0.351·23-s − 0.204·24-s − 0.588·25-s − 1.13·26-s + 0.192·27-s − 0.353·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.788067255\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.788067255\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 223 | \( 1 + T \) |
good | 5 | \( 1 - 1.43T + 5T^{2} \) |
| 7 | \( 1 + 1.87T + 7T^{2} \) |
| 11 | \( 1 - 5.50T + 11T^{2} \) |
| 13 | \( 1 - 5.81T + 13T^{2} \) |
| 17 | \( 1 + 3.16T + 17T^{2} \) |
| 19 | \( 1 + 0.890T + 19T^{2} \) |
| 23 | \( 1 - 1.68T + 23T^{2} \) |
| 29 | \( 1 + 6.77T + 29T^{2} \) |
| 31 | \( 1 - 2.18T + 31T^{2} \) |
| 37 | \( 1 - 9.53T + 37T^{2} \) |
| 41 | \( 1 - 5.50T + 41T^{2} \) |
| 43 | \( 1 + 9.08T + 43T^{2} \) |
| 47 | \( 1 - 4.43T + 47T^{2} \) |
| 53 | \( 1 - 9.50T + 53T^{2} \) |
| 59 | \( 1 - 14.8T + 59T^{2} \) |
| 61 | \( 1 + 12.3T + 61T^{2} \) |
| 67 | \( 1 + 0.993T + 67T^{2} \) |
| 71 | \( 1 - 4.42T + 71T^{2} \) |
| 73 | \( 1 - 2.32T + 73T^{2} \) |
| 79 | \( 1 + 12.5T + 79T^{2} \) |
| 83 | \( 1 - 15.1T + 83T^{2} \) |
| 89 | \( 1 + 3.41T + 89T^{2} \) |
| 97 | \( 1 + 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.394211971808337714366431050190, −8.996571107349110890366579419615, −8.286399491738411070998189275903, −7.13217545175246791281468520635, −6.37382444802770303715476333651, −5.90606153591497433606478854091, −4.16182532945671102375721882002, −3.45923228931344902655259676374, −2.17501530240991508313784865739, −1.15363645918272117607549757472,
1.15363645918272117607549757472, 2.17501530240991508313784865739, 3.45923228931344902655259676374, 4.16182532945671102375721882002, 5.90606153591497433606478854091, 6.37382444802770303715476333651, 7.13217545175246791281468520635, 8.286399491738411070998189275903, 8.996571107349110890366579419615, 9.394211971808337714366431050190