Properties

Label 2-1338-1.1-c1-0-8
Degree $2$
Conductor $1338$
Sign $1$
Analytic cond. $10.6839$
Root an. cond. $3.26863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 1.43·5-s − 6-s − 1.87·7-s − 8-s + 9-s − 1.43·10-s + 5.50·11-s + 12-s + 5.81·13-s + 1.87·14-s + 1.43·15-s + 16-s − 3.16·17-s − 18-s − 0.890·19-s + 1.43·20-s − 1.87·21-s − 5.50·22-s + 1.68·23-s − 24-s − 2.94·25-s − 5.81·26-s + 27-s − 1.87·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.641·5-s − 0.408·6-s − 0.707·7-s − 0.353·8-s + 0.333·9-s − 0.453·10-s + 1.66·11-s + 0.288·12-s + 1.61·13-s + 0.500·14-s + 0.370·15-s + 0.250·16-s − 0.766·17-s − 0.235·18-s − 0.204·19-s + 0.320·20-s − 0.408·21-s − 1.17·22-s + 0.351·23-s − 0.204·24-s − 0.588·25-s − 1.13·26-s + 0.192·27-s − 0.353·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1338\)    =    \(2 \cdot 3 \cdot 223\)
Sign: $1$
Analytic conductor: \(10.6839\)
Root analytic conductor: \(3.26863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.788067255\)
\(L(\frac12)\) \(\approx\) \(1.788067255\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
223 \( 1 + T \)
good5 \( 1 - 1.43T + 5T^{2} \)
7 \( 1 + 1.87T + 7T^{2} \)
11 \( 1 - 5.50T + 11T^{2} \)
13 \( 1 - 5.81T + 13T^{2} \)
17 \( 1 + 3.16T + 17T^{2} \)
19 \( 1 + 0.890T + 19T^{2} \)
23 \( 1 - 1.68T + 23T^{2} \)
29 \( 1 + 6.77T + 29T^{2} \)
31 \( 1 - 2.18T + 31T^{2} \)
37 \( 1 - 9.53T + 37T^{2} \)
41 \( 1 - 5.50T + 41T^{2} \)
43 \( 1 + 9.08T + 43T^{2} \)
47 \( 1 - 4.43T + 47T^{2} \)
53 \( 1 - 9.50T + 53T^{2} \)
59 \( 1 - 14.8T + 59T^{2} \)
61 \( 1 + 12.3T + 61T^{2} \)
67 \( 1 + 0.993T + 67T^{2} \)
71 \( 1 - 4.42T + 71T^{2} \)
73 \( 1 - 2.32T + 73T^{2} \)
79 \( 1 + 12.5T + 79T^{2} \)
83 \( 1 - 15.1T + 83T^{2} \)
89 \( 1 + 3.41T + 89T^{2} \)
97 \( 1 + 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.394211971808337714366431050190, −8.996571107349110890366579419615, −8.286399491738411070998189275903, −7.13217545175246791281468520635, −6.37382444802770303715476333651, −5.90606153591497433606478854091, −4.16182532945671102375721882002, −3.45923228931344902655259676374, −2.17501530240991508313784865739, −1.15363645918272117607549757472, 1.15363645918272117607549757472, 2.17501530240991508313784865739, 3.45923228931344902655259676374, 4.16182532945671102375721882002, 5.90606153591497433606478854091, 6.37382444802770303715476333651, 7.13217545175246791281468520635, 8.286399491738411070998189275903, 8.996571107349110890366579419615, 9.394211971808337714366431050190

Graph of the $Z$-function along the critical line