L(s) = 1 | − 2-s + (−0.5 − 0.866i)3-s + 4-s + (−1.93 + 3.35i)5-s + (0.5 + 0.866i)6-s − 0.151·7-s − 8-s + (−0.499 + 0.866i)9-s + (1.93 − 3.35i)10-s + (0.443 − 0.768i)11-s + (−0.5 − 0.866i)12-s − 2.55·13-s + 0.151·14-s + 3.87·15-s + 16-s + 6.14·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (−0.867 + 1.50i)5-s + (0.204 + 0.353i)6-s − 0.0574·7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.613 − 1.06i)10-s + (0.133 − 0.231i)11-s + (−0.144 − 0.249i)12-s − 0.709·13-s + 0.0406·14-s + 1.00·15-s + 0.250·16-s + 1.49·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2565843288\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2565843288\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 223 | \( 1 + (-4.89 - 14.1i)T \) |
good | 5 | \( 1 + (1.93 - 3.35i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 0.151T + 7T^{2} \) |
| 11 | \( 1 + (-0.443 + 0.768i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.55T + 13T^{2} \) |
| 17 | \( 1 - 6.14T + 17T^{2} \) |
| 19 | \( 1 + (-1.72 - 2.98i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.21 - 3.83i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.88 - 6.73i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.208 + 0.360i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.08 + 1.88i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.19T + 41T^{2} \) |
| 43 | \( 1 + (2.79 + 4.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.30 - 9.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.48 + 4.30i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 10.6T + 59T^{2} \) |
| 61 | \( 1 + (7.54 + 13.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.36 + 7.56i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.92 - 5.06i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.302 + 0.524i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.25 + 3.89i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.87 - 4.97i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.67 + 8.09i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.11 + 1.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07186346543878077273814678525, −9.333431039019519157246635674183, −7.968537560317635557052710314646, −7.65393642673750409161538301998, −6.97937909103164617424991882735, −6.19792852822337220311704126178, −5.19657551537875337951403271980, −3.51297896950889320226041984786, −3.04134754300483396894562674460, −1.58266930369195455381521603031,
0.15261201402289831726445057485, 1.30067724739835968969549871740, 3.02105119021876405426658328150, 4.20432884488372548186933815072, 4.93782811982024684020912310196, 5.72312921052478905336570476491, 7.00974914784021826253504371658, 7.86064398410774444142960109424, 8.407576758920523784619898709078, 9.382696766655458734959943416632