L(s) = 1 | − 2-s + (−0.5 − 0.866i)3-s + 4-s + (−1.93 + 3.35i)5-s + (0.5 + 0.866i)6-s − 0.151·7-s − 8-s + (−0.499 + 0.866i)9-s + (1.93 − 3.35i)10-s + (0.443 − 0.768i)11-s + (−0.5 − 0.866i)12-s − 2.55·13-s + 0.151·14-s + 3.87·15-s + 16-s + 6.14·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (−0.867 + 1.50i)5-s + (0.204 + 0.353i)6-s − 0.0574·7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.613 − 1.06i)10-s + (0.133 − 0.231i)11-s + (−0.144 − 0.249i)12-s − 0.709·13-s + 0.0406·14-s + 1.00·15-s + 0.250·16-s + 1.49·17-s + ⋯ |
Λ(s)=(=(1338s/2ΓC(s)L(s)(−0.997−0.0712i)Λ(2−s)
Λ(s)=(=(1338s/2ΓC(s+1/2)L(s)(−0.997−0.0712i)Λ(1−s)
Degree: |
2 |
Conductor: |
1338
= 2⋅3⋅223
|
Sign: |
−0.997−0.0712i
|
Analytic conductor: |
10.6839 |
Root analytic conductor: |
3.26863 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1338(1075,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1338, ( :1/2), −0.997−0.0712i)
|
Particular Values
L(1) |
≈ |
0.2565843288 |
L(21) |
≈ |
0.2565843288 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+(0.5+0.866i)T |
| 223 | 1+(−4.89−14.1i)T |
good | 5 | 1+(1.93−3.35i)T+(−2.5−4.33i)T2 |
| 7 | 1+0.151T+7T2 |
| 11 | 1+(−0.443+0.768i)T+(−5.5−9.52i)T2 |
| 13 | 1+2.55T+13T2 |
| 17 | 1−6.14T+17T2 |
| 19 | 1+(−1.72−2.98i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2.21−3.83i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.88−6.73i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.208+0.360i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−1.08+1.88i)T+(−18.5−32.0i)T2 |
| 41 | 1+2.19T+41T2 |
| 43 | 1+(2.79+4.83i)T+(−21.5+37.2i)T2 |
| 47 | 1+(5.30−9.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−2.48+4.30i)T+(−26.5−45.8i)T2 |
| 59 | 1+10.6T+59T2 |
| 61 | 1+(7.54+13.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4.36+7.56i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.92−5.06i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.302+0.524i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.25+3.89i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.87−4.97i)T+(−41.5−71.8i)T2 |
| 89 | 1+(4.67+8.09i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1.11+1.92i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07186346543878077273814678525, −9.333431039019519157246635674183, −7.968537560317635557052710314646, −7.65393642673750409161538301998, −6.97937909103164617424991882735, −6.19792852822337220311704126178, −5.19657551537875337951403271980, −3.51297896950889320226041984786, −3.04134754300483396894562674460, −1.58266930369195455381521603031,
0.15261201402289831726445057485, 1.30067724739835968969549871740, 3.02105119021876405426658328150, 4.20432884488372548186933815072, 4.93782811982024684020912310196, 5.72312921052478905336570476491, 7.00974914784021826253504371658, 7.86064398410774444142960109424, 8.407576758920523784619898709078, 9.382696766655458734959943416632