L(s) = 1 | + (−0.323 − 0.323i)2-s − 1.79i·4-s + (1.22 + 1.87i)5-s + (1.79 − 1.79i)7-s + (−1.22 + 1.22i)8-s + (0.208 − 0.999i)10-s − 5.54i·11-s + (1.79 + 1.79i)13-s − 1.15·14-s − 2.79·16-s + (1.87 + 1.87i)17-s + 3i·19-s + (3.35 − 2.19i)20-s + (−1.79 + 1.79i)22-s + (−4.32 + 4.32i)23-s + ⋯ |
L(s) = 1 | + (−0.228 − 0.228i)2-s − 0.895i·4-s + (0.547 + 0.836i)5-s + (0.677 − 0.677i)7-s + (−0.433 + 0.433i)8-s + (0.0660 − 0.316i)10-s − 1.67i·11-s + (0.496 + 0.496i)13-s − 0.309·14-s − 0.697·16-s + (0.453 + 0.453i)17-s + 0.688i·19-s + (0.749 − 0.490i)20-s + (−0.381 + 0.381i)22-s + (−0.900 + 0.900i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.725 + 0.688i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.725 + 0.688i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00486 - 0.400969i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00486 - 0.400969i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.22 - 1.87i)T \) |
good | 2 | \( 1 + (0.323 + 0.323i)T + 2iT^{2} \) |
| 7 | \( 1 + (-1.79 + 1.79i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.54iT - 11T^{2} \) |
| 13 | \( 1 + (-1.79 - 1.79i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.87 - 1.87i)T + 17iT^{2} \) |
| 19 | \( 1 - 3iT - 19T^{2} \) |
| 23 | \( 1 + (4.32 - 4.32i)T - 23iT^{2} \) |
| 29 | \( 1 + 4.38T + 29T^{2} \) |
| 31 | \( 1 + T + 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.54iT - 41T^{2} \) |
| 43 | \( 1 + (-3.20 - 3.20i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.646 - 0.646i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.0674 + 0.0674i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.38T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 + (-8.58 + 8.58i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.54iT - 71T^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 + 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (8.70 - 8.70i)T - 83iT^{2} \) |
| 89 | \( 1 - 16.6T + 89T^{2} \) |
| 97 | \( 1 + (3.58 - 3.58i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.61489495128882556220892525395, −11.64145880607481508308750588512, −10.90185203004764225257335910539, −10.28138605531598066743605464214, −9.102594990326131027285332293248, −7.83470481704393807457943601585, −6.31806941393255689084706515881, −5.56147505710240121737893587048, −3.59922831176414174465889338660, −1.61713194195920318200066816582,
2.23795266877774120938677657403, 4.31495365375244826910554547607, 5.49023505411011861881754541121, 7.07657552102532176137596332465, 8.181330501512705467690782992552, 9.008138393135755701146257930127, 9.997577919320859843866702623095, 11.61609993281928945235842966793, 12.46846489737220114243643761998, 13.03854446736934493498721445837