L(s) = 1 | + 2-s + 4-s − 2·7-s + 8-s + 3·11-s + 13-s − 2·14-s + 16-s − 3·17-s + 8·19-s + 3·22-s + 3·23-s + 26-s − 2·28-s + 9·29-s − 7·31-s + 32-s − 3·34-s − 2·37-s + 8·38-s + 12·41-s + 7·43-s + 3·44-s + 3·46-s − 3·47-s − 3·49-s + 52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s + 0.904·11-s + 0.277·13-s − 0.534·14-s + 1/4·16-s − 0.727·17-s + 1.83·19-s + 0.639·22-s + 0.625·23-s + 0.196·26-s − 0.377·28-s + 1.67·29-s − 1.25·31-s + 0.176·32-s − 0.514·34-s − 0.328·37-s + 1.29·38-s + 1.87·41-s + 1.06·43-s + 0.452·44-s + 0.442·46-s − 0.437·47-s − 3/7·49-s + 0.138·52-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.648785563 |
L(21) |
≈ |
2.648785563 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+2T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−12T+pT2 |
| 43 | 1−7T+pT2 |
| 47 | 1+3T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+T+pT2 |
| 83 | 1−18T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.429245595815721672181577127890, −9.072503855710526131661237974419, −7.77525488848171336433338902364, −6.96206917457341163684760702823, −6.29697405356291031337465683385, −5.44624806543657551278179807260, −4.42905986906434781866538981809, −3.52758168075608665434978537597, −2.69679316478050875122526015205, −1.15765950034440094850851077493,
1.15765950034440094850851077493, 2.69679316478050875122526015205, 3.52758168075608665434978537597, 4.42905986906434781866538981809, 5.44624806543657551278179807260, 6.29697405356291031337465683385, 6.96206917457341163684760702823, 7.77525488848171336433338902364, 9.072503855710526131661237974419, 9.429245595815721672181577127890