Properties

Label 2-1350-1.1-c1-0-8
Degree $2$
Conductor $1350$
Sign $1$
Analytic cond. $10.7798$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s + 3·11-s + 13-s − 2·14-s + 16-s − 3·17-s + 8·19-s + 3·22-s + 3·23-s + 26-s − 2·28-s + 9·29-s − 7·31-s + 32-s − 3·34-s − 2·37-s + 8·38-s + 12·41-s + 7·43-s + 3·44-s + 3·46-s − 3·47-s − 3·49-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s + 0.904·11-s + 0.277·13-s − 0.534·14-s + 1/4·16-s − 0.727·17-s + 1.83·19-s + 0.639·22-s + 0.625·23-s + 0.196·26-s − 0.377·28-s + 1.67·29-s − 1.25·31-s + 0.176·32-s − 0.514·34-s − 0.328·37-s + 1.29·38-s + 1.87·41-s + 1.06·43-s + 0.452·44-s + 0.442·46-s − 0.437·47-s − 3/7·49-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1350\)    =    \(2 \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(10.7798\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.648785563\)
\(L(\frac12)\) \(\approx\) \(2.648785563\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 18 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.429245595815721672181577127890, −9.072503855710526131661237974419, −7.77525488848171336433338902364, −6.96206917457341163684760702823, −6.29697405356291031337465683385, −5.44624806543657551278179807260, −4.42905986906434781866538981809, −3.52758168075608665434978537597, −2.69679316478050875122526015205, −1.15765950034440094850851077493, 1.15765950034440094850851077493, 2.69679316478050875122526015205, 3.52758168075608665434978537597, 4.42905986906434781866538981809, 5.44624806543657551278179807260, 6.29697405356291031337465683385, 6.96206917457341163684760702823, 7.77525488848171336433338902364, 9.072503855710526131661237974419, 9.429245595815721672181577127890

Graph of the $Z$-function along the critical line