L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−1.44 − 1.44i)7-s + (0.707 + 0.707i)8-s + 1.09i·11-s + (−4.22 + 4.22i)13-s + 2.04·14-s − 1.00·16-s + (4.17 − 4.17i)17-s − 4.44i·19-s + (−0.775 − 0.775i)22-s + (4.48 + 4.48i)23-s − 5.97i·26-s + (−1.44 + 1.44i)28-s + 3.14·29-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.547 − 0.547i)7-s + (0.250 + 0.250i)8-s + 0.330i·11-s + (−1.17 + 1.17i)13-s + 0.547·14-s − 0.250·16-s + (1.01 − 1.01i)17-s − 1.02i·19-s + (−0.165 − 0.165i)22-s + (0.936 + 0.936i)23-s − 1.17i·26-s + (−0.273 + 0.273i)28-s + 0.584·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9816381952\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9816381952\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.44 + 1.44i)T + 7iT^{2} \) |
| 11 | \( 1 - 1.09iT - 11T^{2} \) |
| 13 | \( 1 + (4.22 - 4.22i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.17 + 4.17i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.44iT - 19T^{2} \) |
| 23 | \( 1 + (-4.48 - 4.48i)T + 23iT^{2} \) |
| 29 | \( 1 - 3.14T + 29T^{2} \) |
| 31 | \( 1 + 1.44T + 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + 4.87iT - 41T^{2} \) |
| 43 | \( 1 + (-7.22 + 7.22i)T - 43iT^{2} \) |
| 47 | \( 1 + (-7.31 + 7.31i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.65 + 5.65i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.82T + 59T^{2} \) |
| 61 | \( 1 + 8.44T + 61T^{2} \) |
| 67 | \( 1 + (2 + 2i)T + 67iT^{2} \) |
| 71 | \( 1 + 13.9iT - 71T^{2} \) |
| 73 | \( 1 + (-4.44 + 4.44i)T - 73iT^{2} \) |
| 79 | \( 1 + 5.44iT - 79T^{2} \) |
| 83 | \( 1 + (-10.2 - 10.2i)T + 83iT^{2} \) |
| 89 | \( 1 - 17.4T + 89T^{2} \) |
| 97 | \( 1 + (8.44 + 8.44i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.333887327933462977308143403775, −9.051815829365069031504201014932, −7.55740647140918706378847322305, −7.24259506660472686014800444190, −6.56255281204160970744002967954, −5.30473274194676816442431372672, −4.66221612915879196103838012391, −3.39123738519958149344029146984, −2.15384539760650816871920239587, −0.56959322387944410185735935517,
1.08264834605008568852995560002, 2.63466959303357571749364922695, 3.21417846065559138306633367289, 4.47721054556024230477444769867, 5.62801603461650053274762145209, 6.30023162150392864711127522162, 7.59773164270785052987779680286, 8.039876861911468151640327741824, 8.998444112748535737630952265102, 9.743584453556233508353433652679