Properties

Label 2-1350-15.2-c1-0-10
Degree 22
Conductor 13501350
Sign 0.850+0.525i0.850 + 0.525i
Analytic cond. 10.779810.7798
Root an. cond. 3.283263.28326
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−1.44 − 1.44i)7-s + (0.707 + 0.707i)8-s + 1.09i·11-s + (−4.22 + 4.22i)13-s + 2.04·14-s − 1.00·16-s + (4.17 − 4.17i)17-s − 4.44i·19-s + (−0.775 − 0.775i)22-s + (4.48 + 4.48i)23-s − 5.97i·26-s + (−1.44 + 1.44i)28-s + 3.14·29-s + ⋯
L(s)  = 1  + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.547 − 0.547i)7-s + (0.250 + 0.250i)8-s + 0.330i·11-s + (−1.17 + 1.17i)13-s + 0.547·14-s − 0.250·16-s + (1.01 − 1.01i)17-s − 1.02i·19-s + (−0.165 − 0.165i)22-s + (0.936 + 0.936i)23-s − 1.17i·26-s + (−0.273 + 0.273i)28-s + 0.584·29-s + ⋯

Functional equation

Λ(s)=(1350s/2ΓC(s)L(s)=((0.850+0.525i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1350s/2ΓC(s+1/2)L(s)=((0.850+0.525i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13501350    =    233522 \cdot 3^{3} \cdot 5^{2}
Sign: 0.850+0.525i0.850 + 0.525i
Analytic conductor: 10.779810.7798
Root analytic conductor: 3.283263.28326
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1350(107,)\chi_{1350} (107, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1350, ( :1/2), 0.850+0.525i)(2,\ 1350,\ (\ :1/2),\ 0.850 + 0.525i)

Particular Values

L(1)L(1) \approx 0.98163819520.9816381952
L(12)L(\frac12) \approx 0.98163819520.9816381952
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
3 1 1
5 1 1
good7 1+(1.44+1.44i)T+7iT2 1 + (1.44 + 1.44i)T + 7iT^{2}
11 11.09iT11T2 1 - 1.09iT - 11T^{2}
13 1+(4.224.22i)T13iT2 1 + (4.22 - 4.22i)T - 13iT^{2}
17 1+(4.17+4.17i)T17iT2 1 + (-4.17 + 4.17i)T - 17iT^{2}
19 1+4.44iT19T2 1 + 4.44iT - 19T^{2}
23 1+(4.484.48i)T+23iT2 1 + (-4.48 - 4.48i)T + 23iT^{2}
29 13.14T+29T2 1 - 3.14T + 29T^{2}
31 1+1.44T+31T2 1 + 1.44T + 31T^{2}
37 1+37iT2 1 + 37iT^{2}
41 1+4.87iT41T2 1 + 4.87iT - 41T^{2}
43 1+(7.22+7.22i)T43iT2 1 + (-7.22 + 7.22i)T - 43iT^{2}
47 1+(7.31+7.31i)T47iT2 1 + (-7.31 + 7.31i)T - 47iT^{2}
53 1+(5.65+5.65i)T+53iT2 1 + (5.65 + 5.65i)T + 53iT^{2}
59 1+2.82T+59T2 1 + 2.82T + 59T^{2}
61 1+8.44T+61T2 1 + 8.44T + 61T^{2}
67 1+(2+2i)T+67iT2 1 + (2 + 2i)T + 67iT^{2}
71 1+13.9iT71T2 1 + 13.9iT - 71T^{2}
73 1+(4.44+4.44i)T73iT2 1 + (-4.44 + 4.44i)T - 73iT^{2}
79 1+5.44iT79T2 1 + 5.44iT - 79T^{2}
83 1+(10.210.2i)T+83iT2 1 + (-10.2 - 10.2i)T + 83iT^{2}
89 117.4T+89T2 1 - 17.4T + 89T^{2}
97 1+(8.44+8.44i)T+97iT2 1 + (8.44 + 8.44i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.333887327933462977308143403775, −9.051815829365069031504201014932, −7.55740647140918706378847322305, −7.24259506660472686014800444190, −6.56255281204160970744002967954, −5.30473274194676816442431372672, −4.66221612915879196103838012391, −3.39123738519958149344029146984, −2.15384539760650816871920239587, −0.56959322387944410185735935517, 1.08264834605008568852995560002, 2.63466959303357571749364922695, 3.21417846065559138306633367289, 4.47721054556024230477444769867, 5.62801603461650053274762145209, 6.30023162150392864711127522162, 7.59773164270785052987779680286, 8.039876861911468151640327741824, 8.998444112748535737630952265102, 9.743584453556233508353433652679

Graph of the ZZ-function along the critical line