L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.896 + 0.896i)7-s + (0.707 + 0.707i)8-s − 3i·11-s + (2.12 − 2.12i)13-s − 1.26·14-s − 1.00·16-s + (−1.55 + 1.55i)17-s − 6.19i·19-s + (2.12 + 2.12i)22-s + (−2.12 − 2.12i)23-s + 3i·26-s + (0.896 − 0.896i)28-s − 8.19·29-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.338 + 0.338i)7-s + (0.250 + 0.250i)8-s − 0.904i·11-s + (0.588 − 0.588i)13-s − 0.338·14-s − 0.250·16-s + (−0.376 + 0.376i)17-s − 1.42i·19-s + (0.452 + 0.452i)22-s + (−0.442 − 0.442i)23-s + 0.588i·26-s + (0.169 − 0.169i)28-s − 1.52·29-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(0.608+0.793i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(0.608+0.793i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
0.608+0.793i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), 0.608+0.793i)
|
Particular Values
L(1) |
≈ |
1.063091114 |
L(21) |
≈ |
1.063091114 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−0.896−0.896i)T+7iT2 |
| 11 | 1+3iT−11T2 |
| 13 | 1+(−2.12+2.12i)T−13iT2 |
| 17 | 1+(1.55−1.55i)T−17iT2 |
| 19 | 1+6.19iT−19T2 |
| 23 | 1+(2.12+2.12i)T+23iT2 |
| 29 | 1+8.19T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+(−7.02−7.02i)T+37iT2 |
| 41 | 1+6iT−41T2 |
| 43 | 1+(−7.58+7.58i)T−43iT2 |
| 47 | 1+(6.36−6.36i)T−47iT2 |
| 53 | 1+(1.55+1.55i)T+53iT2 |
| 59 | 1−13.3T+59T2 |
| 61 | 1+9.19T+61T2 |
| 67 | 1+(1.55+1.55i)T+67iT2 |
| 71 | 1+0.803iT−71T2 |
| 73 | 1+(−6.03+6.03i)T−73iT2 |
| 79 | 1+10.1iT−79T2 |
| 83 | 1+(3.10+3.10i)T+83iT2 |
| 89 | 1−8.19T+89T2 |
| 97 | 1+(1.88+1.88i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.209840672968511034700763846601, −8.681977600822778502233185994896, −7.993476278119332052353142210911, −7.11640058943353434235265913545, −6.14339681641352935181771131464, −5.56106862724367152994134598283, −4.51833731289144488279841802425, −3.30882528195806494555472071147, −2.05410301838966525042489425367, −0.54242050434655473379279638548,
1.37629595288804470575697488086, 2.28088967688965539582230508217, 3.73642977488491913422420120324, 4.32616727665330000030499225190, 5.56327617868676416663734056207, 6.57387243147352117944930640091, 7.58969153828471736454559839989, 7.991754322337710405177645027959, 9.211167318467304992941910061115, 9.594088760668680366669842124382