L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.68 − 2.92i)7-s − 0.999·8-s + (−2.18 + 3.78i)11-s + (−3.37 − 5.84i)13-s + (−1.68 − 2.92i)14-s + (−0.5 + 0.866i)16-s − 1.62·17-s − 2.37·19-s + (2.18 + 3.78i)22-s + (−0.686 − 1.18i)23-s − 6.74·26-s − 3.37·28-s + (0.686 − 1.18i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.637 − 1.10i)7-s − 0.353·8-s + (−0.659 + 1.14i)11-s + (−0.935 − 1.61i)13-s + (−0.450 − 0.780i)14-s + (−0.125 + 0.216i)16-s − 0.394·17-s − 0.544·19-s + (0.466 + 0.807i)22-s + (−0.143 − 0.247i)23-s − 1.32·26-s − 0.637·28-s + (0.127 − 0.220i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.155449398\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.155449398\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.68 + 2.92i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.18 - 3.78i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.37 + 5.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.62T + 17T^{2} \) |
| 19 | \( 1 + 2.37T + 19T^{2} \) |
| 23 | \( 1 + (0.686 + 1.18i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.686 + 1.18i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.37 + 4.10i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.81 - 4.87i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.68 + 6.38i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 11.4T + 53T^{2} \) |
| 59 | \( 1 + (-2.18 - 3.78i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.05 + 7.02i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 + 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 3.11T + 73T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.68 - 6.38i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 16.1T + 89T^{2} \) |
| 97 | \( 1 + (4.18 - 7.25i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.594793198102994899655294353226, −8.208077192333327158054421164463, −7.67703162144427077941433231123, −6.85939501111415035919907215913, −5.58035663198225969691658068112, −4.77247838521949474450934730247, −4.16250271313971930805068668779, −2.89505671910574810782854984780, −1.91976876368333965946803393861, −0.39325568901143939673284207071,
1.96516205169217768083173587473, 2.94958009748604298446120992469, 4.28606288454581634274843902220, 5.05287122772067412600783394698, 5.82101939346536012136074021965, 6.64360564819188993231464793411, 7.53836564486828907623381113602, 8.505697753750577879836377048411, 8.866731704692558606784359831743, 9.786119410953303222133753381929