L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.68 − 2.92i)7-s − 0.999·8-s + (−2.18 + 3.78i)11-s + (−3.37 − 5.84i)13-s + (−1.68 − 2.92i)14-s + (−0.5 + 0.866i)16-s − 1.62·17-s − 2.37·19-s + (2.18 + 3.78i)22-s + (−0.686 − 1.18i)23-s − 6.74·26-s − 3.37·28-s + (0.686 − 1.18i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.637 − 1.10i)7-s − 0.353·8-s + (−0.659 + 1.14i)11-s + (−0.935 − 1.61i)13-s + (−0.450 − 0.780i)14-s + (−0.125 + 0.216i)16-s − 0.394·17-s − 0.544·19-s + (0.466 + 0.807i)22-s + (−0.143 − 0.247i)23-s − 1.32·26-s − 0.637·28-s + (0.127 − 0.220i)29-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.998+0.0561i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.998+0.0561i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.998+0.0561i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), −0.998+0.0561i)
|
Particular Values
L(1) |
≈ |
1.155449398 |
L(21) |
≈ |
1.155449398 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−1.68+2.92i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.18−3.78i)T+(−5.5−9.52i)T2 |
| 13 | 1+(3.37+5.84i)T+(−6.5+11.2i)T2 |
| 17 | 1+1.62T+17T2 |
| 19 | 1+2.37T+19T2 |
| 23 | 1+(0.686+1.18i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.686+1.18i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.37+4.10i)T+(−15.5+26.8i)T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.81−4.87i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.68+6.38i)T+(−23.5−40.7i)T2 |
| 53 | 1+11.4T+53T2 |
| 59 | 1+(−2.18−3.78i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.05+7.02i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.5+6.06i)T+(−33.5+58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+3.11T+73T2 |
| 79 | 1+(1−1.73i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.68−6.38i)T+(−41.5−71.8i)T2 |
| 89 | 1+16.1T+89T2 |
| 97 | 1+(4.18−7.25i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.594793198102994899655294353226, −8.208077192333327158054421164463, −7.67703162144427077941433231123, −6.85939501111415035919907215913, −5.58035663198225969691658068112, −4.77247838521949474450934730247, −4.16250271313971930805068668779, −2.89505671910574810782854984780, −1.91976876368333965946803393861, −0.39325568901143939673284207071,
1.96516205169217768083173587473, 2.94958009748604298446120992469, 4.28606288454581634274843902220, 5.05287122772067412600783394698, 5.82101939346536012136074021965, 6.64360564819188993231464793411, 7.53836564486828907623381113602, 8.505697753750577879836377048411, 8.866731704692558606784359831743, 9.786119410953303222133753381929