L(s) = 1 | + (0.173 + 0.984i)2-s + 3-s + (−0.939 + 0.342i)4-s + (0.173 + 0.984i)6-s + (−0.5 − 0.866i)8-s + 9-s + 1.53·11-s + (−0.939 + 0.342i)12-s + (0.766 − 0.642i)16-s + (−0.766 + 0.642i)17-s + (0.173 + 0.984i)18-s + (−0.939 + 0.342i)19-s + (0.266 + 1.50i)22-s + (−0.5 − 0.866i)24-s + (0.173 − 0.984i)25-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + 3-s + (−0.939 + 0.342i)4-s + (0.173 + 0.984i)6-s + (−0.5 − 0.866i)8-s + 9-s + 1.53·11-s + (−0.939 + 0.342i)12-s + (0.766 − 0.642i)16-s + (−0.766 + 0.642i)17-s + (0.173 + 0.984i)18-s + (−0.939 + 0.342i)19-s + (0.266 + 1.50i)22-s + (−0.5 − 0.866i)24-s + (0.173 − 0.984i)25-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)(0.188−0.982i)Λ(1−s)
Λ(s)=(=(1368s/2ΓC(s)L(s)(0.188−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
0.188−0.982i
|
Analytic conductor: |
0.682720 |
Root analytic conductor: |
0.826269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(1051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :0), 0.188−0.982i)
|
Particular Values
L(21) |
≈ |
1.559702292 |
L(21) |
≈ |
1.559702292 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173−0.984i)T |
| 3 | 1−T |
| 19 | 1+(0.939−0.342i)T |
good | 5 | 1+(−0.173+0.984i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1−1.53T+T2 |
| 13 | 1+(−0.173−0.984i)T2 |
| 17 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 23 | 1+(−0.766+0.642i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.266−1.50i)T+(−0.939+0.342i)T2 |
| 43 | 1+(1.87+0.684i)T+(0.766+0.642i)T2 |
| 47 | 1+(−0.766+0.642i)T2 |
| 53 | 1+(0.939+0.342i)T2 |
| 59 | 1+(0.326+0.118i)T+(0.766+0.642i)T2 |
| 61 | 1+(−0.173−0.984i)T2 |
| 67 | 1+(−0.266+1.50i)T+(−0.939−0.342i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 79 | 1+(−0.173+0.984i)T2 |
| 83 | 1+(0.173+0.300i)T+(−0.5+0.866i)T2 |
| 89 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 97 | 1+(0.326+1.85i)T+(−0.939+0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.644588598169575563545602590437, −8.839251783025759231413925949064, −8.447611313288370694579297016318, −7.59626234976418489657337340151, −6.50705252398641487236156562425, −6.33090661288406209697110685151, −4.67394843388091085531201171298, −4.13177413080031401308217824498, −3.22134556471724146144083999877, −1.69916276353853756118770485195,
1.43845981839743621590915414958, 2.40723046801462471112230810726, 3.49145132306645658100101960287, 4.15604159493434402295917559932, 5.03280134109724917289783525895, 6.42330283254443637049414934348, 7.19383257656430740923727472997, 8.464115564058963581184869630547, 8.929169300938310182303125130055, 9.521618508322374557271220242217