L(s) = 1 | + (0.173 + 0.984i)2-s + 3-s + (−0.939 + 0.342i)4-s + (0.173 + 0.984i)6-s + (−0.5 − 0.866i)8-s + 9-s + 1.53·11-s + (−0.939 + 0.342i)12-s + (0.766 − 0.642i)16-s + (−0.766 + 0.642i)17-s + (0.173 + 0.984i)18-s + (−0.939 + 0.342i)19-s + (0.266 + 1.50i)22-s + (−0.5 − 0.866i)24-s + (0.173 − 0.984i)25-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + 3-s + (−0.939 + 0.342i)4-s + (0.173 + 0.984i)6-s + (−0.5 − 0.866i)8-s + 9-s + 1.53·11-s + (−0.939 + 0.342i)12-s + (0.766 − 0.642i)16-s + (−0.766 + 0.642i)17-s + (0.173 + 0.984i)18-s + (−0.939 + 0.342i)19-s + (0.266 + 1.50i)22-s + (−0.5 − 0.866i)24-s + (0.173 − 0.984i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.559702292\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.559702292\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.173 - 0.984i)T \) |
| 3 | \( 1 - T \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
good | 5 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - 1.53T + T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (1.87 + 0.684i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (0.326 + 0.118i)T + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.266 + 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.644588598169575563545602590437, −8.839251783025759231413925949064, −8.447611313288370694579297016318, −7.59626234976418489657337340151, −6.50705252398641487236156562425, −6.33090661288406209697110685151, −4.67394843388091085531201171298, −4.13177413080031401308217824498, −3.22134556471724146144083999877, −1.69916276353853756118770485195,
1.43845981839743621590915414958, 2.40723046801462471112230810726, 3.49145132306645658100101960287, 4.15604159493434402295917559932, 5.03280134109724917289783525895, 6.42330283254443637049414934348, 7.19383257656430740923727472997, 8.464115564058963581184869630547, 8.929169300938310182303125130055, 9.521618508322374557271220242217