L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 + 0.5i)5-s − i·6-s + (0.866 − 0.5i)7-s − i·8-s + 9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.5 + 0.866i)14-s + (0.866 − 0.5i)15-s + 16-s + (−0.5 + 0.866i)17-s + i·18-s + ⋯ |
L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 + 0.5i)5-s − i·6-s + (0.866 − 0.5i)7-s − i·8-s + 9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.5 + 0.866i)14-s + (0.866 − 0.5i)15-s + 16-s + (−0.5 + 0.866i)17-s + i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 - 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 - 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5927922288\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5927922288\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 2iT - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.997845002965037758416562084212, −9.357892879685720733896280210297, −7.996315755544614159341528969600, −7.61761555947485876040635225999, −6.88338426545065939874180397311, −6.14046629083461239473195480549, −5.08414426631715580775427205765, −4.37402831368063362271674168739, −3.70736182725343264273357302482, −1.41040769341772955298021833895,
0.64883884252614936288081504103, 1.93328793093652259146125002360, 3.50908298697910065660798941257, 4.30356943788939694742619366100, 5.20759666615194740125820140503, 5.68533425837039125906128231297, 7.18651228174847546650366281945, 7.950783588858228305544409918211, 8.969078739805931645637729353509, 9.353326675013679398010100654638