L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 + 0.5i)5-s − i·6-s + (0.866 − 0.5i)7-s − i·8-s + 9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.5 + 0.866i)14-s + (0.866 − 0.5i)15-s + 16-s + (−0.5 + 0.866i)17-s + i·18-s + ⋯ |
L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 + 0.5i)5-s − i·6-s + (0.866 − 0.5i)7-s − i·8-s + 9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.5 + 0.866i)14-s + (0.866 − 0.5i)15-s + 16-s + (−0.5 + 0.866i)17-s + i·18-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.790−0.612i)Λ(1−s)
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.790−0.612i)Λ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
−0.790−0.612i
|
Analytic conductor: |
0.682720 |
Root analytic conductor: |
0.826269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(1075,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :0), −0.790−0.612i)
|
Particular Values
L(21) |
≈ |
0.5927922288 |
L(21) |
≈ |
0.5927922288 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+T |
| 19 | 1−T |
good | 5 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 7 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 31 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 37 | 1−2iT−T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 67 | 1−2T+T2 |
| 71 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1−T2 |
| 83 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.997845002965037758416562084212, −9.357892879685720733896280210297, −7.996315755544614159341528969600, −7.61761555947485876040635225999, −6.88338426545065939874180397311, −6.14046629083461239473195480549, −5.08414426631715580775427205765, −4.37402831368063362271674168739, −3.70736182725343264273357302482, −1.41040769341772955298021833895,
0.64883884252614936288081504103, 1.93328793093652259146125002360, 3.50908298697910065660798941257, 4.30356943788939694742619366100, 5.20759666615194740125820140503, 5.68533425837039125906128231297, 7.18651228174847546650366281945, 7.950783588858228305544409918211, 8.969078739805931645637729353509, 9.353326675013679398010100654638