L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−1.5 + 0.866i)11-s + 0.999·12-s + (−0.5 − 0.866i)16-s + 1.73i·17-s − 0.999·18-s + (0.5 + 0.866i)19-s + (−1.5 − 0.866i)22-s + (0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−1.5 + 0.866i)11-s + 0.999·12-s + (−0.5 − 0.866i)16-s + 1.73i·17-s − 0.999·18-s + (0.5 + 0.866i)19-s + (−1.5 − 0.866i)22-s + (0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7801358460\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7801358460\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.73iT - T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19992407014213507329314893543, −8.953728124224133310576321510780, −8.002279276761307831718260393146, −7.63670378739673953381509578231, −6.83068697769412381049165946727, −5.86494250506469358928852376920, −5.38045687324001764086945309329, −4.40955263132450233428023203095, −3.14820470194036311902705481718, −1.88196372475311117823275748292,
0.57279851338610339336732845235, 2.73257050027175518378664748740, 3.15647844675266913186141739174, 4.56571333109753388850040806957, 5.04881230319214055912586177595, 5.77333008573524034871407430954, 6.78924731069484555945057345848, 8.110951552174974471932237545516, 9.043044991540750818265817362150, 9.742837198637934637974034440040