L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + 6-s + (−0.500 + 0.866i)8-s + (0.766 + 0.642i)9-s − 1.87·11-s + (−0.939 + 0.342i)12-s + (0.173 − 0.984i)16-s + (0.347 − 1.96i)17-s + (−0.939 − 0.342i)18-s + (0.173 + 0.984i)19-s + (1.76 − 0.642i)22-s + (0.766 − 0.642i)24-s + (−0.939 − 0.342i)25-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + 6-s + (−0.500 + 0.866i)8-s + (0.766 + 0.642i)9-s − 1.87·11-s + (−0.939 + 0.342i)12-s + (0.173 − 0.984i)16-s + (0.347 − 1.96i)17-s + (−0.939 − 0.342i)18-s + (0.173 + 0.984i)19-s + (1.76 − 0.642i)22-s + (0.766 − 0.642i)24-s + (−0.939 − 0.342i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1622464514\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1622464514\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 3 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.173 - 0.984i)T \) |
good | 5 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + 1.87T + T^{2} \) |
| 13 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.347 + 1.96i)T + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.43 - 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.778811967377034943473399621945, −8.473349002577420088396669849758, −7.66869407674393974455403807767, −7.28968139882676662706049221602, −6.24065540826120027049745277935, −5.39521253728323000543857368702, −4.91672145825870559323984662226, −2.97927172552445241011113117541, −1.83582363627582254173468044454, −0.19785671053864246233162746748,
1.62327040332463009654822383384, 2.95612572687596962168003483353, 4.05474161767340251238105617188, 5.24428967078670367066662669490, 6.00531121013567481306194035779, 6.94656132317318540717616304132, 7.83051447252347100912182512786, 8.458515105810944955369685820120, 9.551844332534569212555842754037, 10.28121779564040163535543332555