L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + 6-s + (−0.500 + 0.866i)8-s + (0.766 + 0.642i)9-s − 1.87·11-s + (−0.939 + 0.342i)12-s + (0.173 − 0.984i)16-s + (0.347 − 1.96i)17-s + (−0.939 − 0.342i)18-s + (0.173 + 0.984i)19-s + (1.76 − 0.642i)22-s + (0.766 − 0.642i)24-s + (−0.939 − 0.342i)25-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + 6-s + (−0.500 + 0.866i)8-s + (0.766 + 0.642i)9-s − 1.87·11-s + (−0.939 + 0.342i)12-s + (0.173 − 0.984i)16-s + (0.347 − 1.96i)17-s + (−0.939 − 0.342i)18-s + (0.173 + 0.984i)19-s + (1.76 − 0.642i)22-s + (0.766 − 0.642i)24-s + (−0.939 − 0.342i)25-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.776+0.630i)Λ(1−s)
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.776+0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
−0.776+0.630i
|
Analytic conductor: |
0.682720 |
Root analytic conductor: |
0.826269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(283,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :0), −0.776+0.630i)
|
Particular Values
L(21) |
≈ |
0.1622464514 |
L(21) |
≈ |
0.1622464514 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.939−0.342i)T |
| 3 | 1+(0.939+0.342i)T |
| 19 | 1+(−0.173−0.984i)T |
good | 5 | 1+(0.939+0.342i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+1.87T+T2 |
| 13 | 1+(0.939−0.342i)T2 |
| 17 | 1+(−0.347+1.96i)T+(−0.939−0.342i)T2 |
| 23 | 1+(−0.173+0.984i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1+(1.43−0.524i)T+(0.766−0.642i)T2 |
| 43 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(−0.766−0.642i)T2 |
| 59 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
| 61 | 1+(0.939−0.342i)T2 |
| 67 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 71 | 1+(−0.766+0.642i)T2 |
| 73 | 1+(1.43+1.20i)T+(0.173+0.984i)T2 |
| 79 | 1+(0.939+0.342i)T2 |
| 83 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 89 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 97 | 1+(0.326−0.118i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.778811967377034943473399621945, −8.473349002577420088396669849758, −7.66869407674393974455403807767, −7.28968139882676662706049221602, −6.24065540826120027049745277935, −5.39521253728323000543857368702, −4.91672145825870559323984662226, −2.97927172552445241011113117541, −1.83582363627582254173468044454, −0.19785671053864246233162746748,
1.62327040332463009654822383384, 2.95612572687596962168003483353, 4.05474161767340251238105617188, 5.24428967078670367066662669490, 6.00531121013567481306194035779, 6.94656132317318540717616304132, 7.83051447252347100912182512786, 8.458515105810944955369685820120, 9.551844332534569212555842754037, 10.28121779564040163535543332555