L(s) = 1 | + (0.939 + 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s − 6-s + (0.500 + 0.866i)8-s + (0.766 − 0.642i)9-s + 0.684i·11-s + (−0.939 − 0.342i)12-s + (0.173 + 0.984i)16-s + (0.939 − 0.342i)18-s + (−0.173 + 0.984i)19-s + (−0.233 + 0.642i)22-s + (−0.766 − 0.642i)24-s + (0.939 − 0.342i)25-s + (−0.500 + 0.866i)27-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s − 6-s + (0.500 + 0.866i)8-s + (0.766 − 0.642i)9-s + 0.684i·11-s + (−0.939 − 0.342i)12-s + (0.173 + 0.984i)16-s + (0.939 − 0.342i)18-s + (−0.173 + 0.984i)19-s + (−0.233 + 0.642i)22-s + (−0.766 − 0.642i)24-s + (0.939 − 0.342i)25-s + (−0.500 + 0.866i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.442384422\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.442384422\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 - 0.342i)T \) |
| 3 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 + (0.173 - 0.984i)T \) |
good | 5 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - 0.684iT - T^{2} \) |
| 13 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.439 + 1.20i)T + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-1.43 + 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.592 - 0.342i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.673 + 1.85i)T + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27880514618393272207230992769, −9.234972554787684811174412518335, −8.126119639914055054434251852605, −7.21051533946065495669638714581, −6.52783148661944558154857315722, −5.75280395955028449468856491017, −4.93296328195058961177954436037, −4.24756089958659077891570123452, −3.27826402835457662213222772579, −1.80129896114823085287066034617,
1.10350110481387059667592179699, 2.45604023922574924976838689234, 3.59545070219792478914290095412, 4.74557935608395493673151184842, 5.28047599475956335546549378422, 6.27098791822153467169276984167, 6.78782047437833212056569685717, 7.68772870993097268926440412529, 8.859912192894589656635933497594, 9.970031995357624874598958487674