L(s) = 1 | + (0.939 + 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s − 6-s + (0.500 + 0.866i)8-s + (0.766 − 0.642i)9-s + 0.684i·11-s + (−0.939 − 0.342i)12-s + (0.173 + 0.984i)16-s + (0.939 − 0.342i)18-s + (−0.173 + 0.984i)19-s + (−0.233 + 0.642i)22-s + (−0.766 − 0.642i)24-s + (0.939 − 0.342i)25-s + (−0.500 + 0.866i)27-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s − 6-s + (0.500 + 0.866i)8-s + (0.766 − 0.642i)9-s + 0.684i·11-s + (−0.939 − 0.342i)12-s + (0.173 + 0.984i)16-s + (0.939 − 0.342i)18-s + (−0.173 + 0.984i)19-s + (−0.233 + 0.642i)22-s + (−0.766 − 0.642i)24-s + (0.939 − 0.342i)25-s + (−0.500 + 0.866i)27-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)(0.150−0.988i)Λ(1−s)
Λ(s)=(=(1368s/2ΓC(s)L(s)(0.150−0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
0.150−0.988i
|
Analytic conductor: |
0.682720 |
Root analytic conductor: |
0.826269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(371,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :0), 0.150−0.988i)
|
Particular Values
L(21) |
≈ |
1.442384422 |
L(21) |
≈ |
1.442384422 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939−0.342i)T |
| 3 | 1+(0.939−0.342i)T |
| 19 | 1+(0.173−0.984i)T |
good | 5 | 1+(−0.939+0.342i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1−0.684iT−T2 |
| 13 | 1+(−0.939−0.342i)T2 |
| 17 | 1+(0.939−0.342i)T2 |
| 23 | 1+(0.173+0.984i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 43 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 47 | 1+(0.173+0.984i)T2 |
| 53 | 1+(−0.766+0.642i)T2 |
| 59 | 1+(0.266−0.223i)T+(0.173−0.984i)T2 |
| 61 | 1+(0.939+0.342i)T2 |
| 67 | 1+(0.439+1.20i)T+(−0.766+0.642i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(−1.43+1.20i)T+(0.173−0.984i)T2 |
| 79 | 1+(−0.939+0.342i)T2 |
| 83 | 1+(0.592−0.342i)T+(0.5−0.866i)T2 |
| 89 | 1+(−0.766−0.642i)T+(0.173+0.984i)T2 |
| 97 | 1+(−0.673+1.85i)T+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27880514618393272207230992769, −9.234972554787684811174412518335, −8.126119639914055054434251852605, −7.21051533946065495669638714581, −6.52783148661944558154857315722, −5.75280395955028449468856491017, −4.93296328195058961177954436037, −4.24756089958659077891570123452, −3.27826402835457662213222772579, −1.80129896114823085287066034617,
1.10350110481387059667592179699, 2.45604023922574924976838689234, 3.59545070219792478914290095412, 4.74557935608395493673151184842, 5.28047599475956335546549378422, 6.27098791822153467169276984167, 6.78782047437833212056569685717, 7.68772870993097268926440412529, 8.859912192894589656635933497594, 9.970031995357624874598958487674