L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.5 − 0.866i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)6-s + (−0.5 + 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.766 − 1.32i)11-s + (0.173 + 0.984i)12-s + (0.766 + 0.642i)16-s + (−1.87 + 0.684i)17-s + (0.766 + 0.642i)18-s + (−0.939 − 0.342i)19-s + (−1.43 + 0.524i)22-s + 0.999·24-s + (−0.939 − 0.342i)25-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.5 − 0.866i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)6-s + (−0.5 + 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.766 − 1.32i)11-s + (0.173 + 0.984i)12-s + (0.766 + 0.642i)16-s + (−1.87 + 0.684i)17-s + (0.766 + 0.642i)18-s + (−0.939 − 0.342i)19-s + (−1.43 + 0.524i)22-s + 0.999·24-s + (−0.939 − 0.342i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3443708033\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3443708033\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.939 + 0.342i)T \) |
good | 5 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (1.87 - 0.684i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.266 + 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 - 1.53T + T^{2} \) |
| 89 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.148925545010146224376032503324, −8.497733848829218322058313484326, −7.83899819123040920448136564942, −6.48180455460170379161220832893, −5.93907368015460238500615358177, −4.96588727201958137153427373380, −3.99275793384514625725584890439, −2.69635582228939759072176510442, −1.91448329070623219941270031189, −0.27112283062176131331796015235,
2.47993740918818229724802701289, 4.00667315732449319582489333184, 4.53483647896850311120643275300, 5.28874848635526302501875890500, 6.21693689657049994559068136518, 6.96591821606840412908047919435, 7.80133745228839099078454474672, 8.852446703593935934162251072908, 9.390259849240522267763564603313, 10.19884929831162974546686500935