L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.5 − 0.866i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)6-s + (−0.5 + 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.766 − 1.32i)11-s + (0.173 + 0.984i)12-s + (0.766 + 0.642i)16-s + (−1.87 + 0.684i)17-s + (0.766 + 0.642i)18-s + (−0.939 − 0.342i)19-s + (−1.43 + 0.524i)22-s + 0.999·24-s + (−0.939 − 0.342i)25-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.5 − 0.866i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)6-s + (−0.5 + 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.766 − 1.32i)11-s + (0.173 + 0.984i)12-s + (0.766 + 0.642i)16-s + (−1.87 + 0.684i)17-s + (0.766 + 0.642i)18-s + (−0.939 − 0.342i)19-s + (−1.43 + 0.524i)22-s + 0.999·24-s + (−0.939 − 0.342i)25-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.378−0.925i)Λ(1−s)
Λ(s)=(=(1368s/2ΓC(s)L(s)(−0.378−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
−0.378−0.925i
|
Analytic conductor: |
0.682720 |
Root analytic conductor: |
0.826269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :0), −0.378−0.925i)
|
Particular Values
L(21) |
≈ |
0.3443708033 |
L(21) |
≈ |
0.3443708033 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173+0.984i)T |
| 3 | 1+(0.5+0.866i)T |
| 19 | 1+(0.939+0.342i)T |
good | 5 | 1+(0.939+0.342i)T2 |
| 7 | 1−T2 |
| 11 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.173+0.984i)T2 |
| 17 | 1+(1.87−0.684i)T+(0.766−0.642i)T2 |
| 23 | 1+(−0.766−0.642i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.326−0.118i)T+(0.766−0.642i)T2 |
| 43 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(−0.173+0.984i)T2 |
| 59 | 1+(1.43+1.20i)T+(0.173+0.984i)T2 |
| 61 | 1+(0.939−0.342i)T2 |
| 67 | 1+(−0.0603−0.342i)T+(−0.939+0.342i)T2 |
| 71 | 1+(−0.173−0.984i)T2 |
| 73 | 1+(−0.266+1.50i)T+(−0.939−0.342i)T2 |
| 79 | 1+(−0.173−0.984i)T2 |
| 83 | 1−1.53T+T2 |
| 89 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 97 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.148925545010146224376032503324, −8.497733848829218322058313484326, −7.83899819123040920448136564942, −6.48180455460170379161220832893, −5.93907368015460238500615358177, −4.96588727201958137153427373380, −3.99275793384514625725584890439, −2.69635582228939759072176510442, −1.91448329070623219941270031189, −0.27112283062176131331796015235,
2.47993740918818229724802701289, 4.00667315732449319582489333184, 4.53483647896850311120643275300, 5.28874848635526302501875890500, 6.21693689657049994559068136518, 6.96591821606840412908047919435, 7.80133745228839099078454474672, 8.852446703593935934162251072908, 9.390259849240522267763564603313, 10.19884929831162974546686500935