L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.171 − 0.296i)5-s + (−2.33 + 1.23i)7-s + 0.999i·8-s + (0.296 + 0.171i)10-s + (0.866 + 0.5i)11-s + 4.10i·13-s + (1.40 − 2.23i)14-s + (−0.5 − 0.866i)16-s + (2.61 − 4.52i)17-s + (−6.70 + 3.86i)19-s − 0.342·20-s − 0.999·22-s + (1.74 − 1.00i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.0766 − 0.132i)5-s + (−0.884 + 0.466i)7-s + 0.353i·8-s + (0.0939 + 0.0542i)10-s + (0.261 + 0.150i)11-s + 1.13i·13-s + (0.376 − 0.598i)14-s + (−0.125 − 0.216i)16-s + (0.633 − 1.09i)17-s + (−1.53 + 0.887i)19-s − 0.0766·20-s − 0.213·22-s + (0.363 − 0.209i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.02136474735\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02136474735\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.33 - 1.23i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.171 + 0.296i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 4.10iT - 13T^{2} \) |
| 17 | \( 1 + (-2.61 + 4.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (6.70 - 3.86i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.74 + 1.00i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.958iT - 29T^{2} \) |
| 31 | \( 1 + (1.01 + 0.585i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.314 - 0.545i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.34T + 41T^{2} \) |
| 43 | \( 1 + 6.93T + 43T^{2} \) |
| 47 | \( 1 + (5.28 + 9.15i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.37 + 3.67i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.67 - 9.82i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.21 - 4.74i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.84 - 11.8i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.47iT - 71T^{2} \) |
| 73 | \( 1 + (7.35 + 4.24i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.37 + 2.38i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.08T + 83T^{2} \) |
| 89 | \( 1 + (-0.164 - 0.284i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.22iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.972055032347093596203578246529, −9.064980490282893544590152895224, −8.673394108758871848583675724975, −7.63564014418658609675130509791, −6.64671160396935849955358172015, −6.30770995030425784301296996089, −5.13979944158350437086952345051, −4.13452459033276222237992519271, −2.89548500794021515853690388012, −1.72994548986252362621135729564,
0.01061988388747111380636292519, 1.46321687632258450971320067758, 2.98560545392302649837947293806, 3.54478268873331023697300109298, 4.76058712089812563424549509263, 6.05861682874374057969456198551, 6.68513257272144363828814558990, 7.62069581098770039642126660763, 8.365488848831215519704864575770, 9.185307512722021957341618377173