L(s) = 1 | + 13.4·2-s + 117.·3-s − 331.·4-s − 2.29e3·5-s + 1.58e3·6-s − 5.05e3·7-s − 1.13e4·8-s − 5.81e3·9-s − 3.07e4·10-s − 8.13e3·11-s − 3.90e4·12-s − 6.79e4·14-s − 2.69e5·15-s + 1.73e4·16-s − 4.81e5·17-s − 7.81e4·18-s + 5.84e5·19-s + 7.59e5·20-s − 5.95e5·21-s − 1.09e5·22-s − 2.43e6·23-s − 1.33e6·24-s + 3.29e6·25-s − 3.00e6·27-s + 1.67e6·28-s − 3.48e6·29-s − 3.62e6·30-s + ⋯ |
L(s) = 1 | + 0.593·2-s + 0.839·3-s − 0.647·4-s − 1.63·5-s + 0.498·6-s − 0.796·7-s − 0.978·8-s − 0.295·9-s − 0.973·10-s − 0.167·11-s − 0.543·12-s − 0.473·14-s − 1.37·15-s + 0.0660·16-s − 1.39·17-s − 0.175·18-s + 1.02·19-s + 1.06·20-s − 0.668·21-s − 0.0995·22-s − 1.81·23-s − 0.821·24-s + 1.68·25-s − 1.08·27-s + 0.515·28-s − 0.916·29-s − 0.817·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.5517442002 |
L(21) |
≈ |
0.5517442002 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−13.4T+512T2 |
| 3 | 1−117.T+1.96e4T2 |
| 5 | 1+2.29e3T+1.95e6T2 |
| 7 | 1+5.05e3T+4.03e7T2 |
| 11 | 1+8.13e3T+2.35e9T2 |
| 17 | 1+4.81e5T+1.18e11T2 |
| 19 | 1−5.84e5T+3.22e11T2 |
| 23 | 1+2.43e6T+1.80e12T2 |
| 29 | 1+3.48e6T+1.45e13T2 |
| 31 | 1−2.77e6T+2.64e13T2 |
| 37 | 1+8.63e6T+1.29e14T2 |
| 41 | 1−4.42e6T+3.27e14T2 |
| 43 | 1+1.52e7T+5.02e14T2 |
| 47 | 1−5.12e7T+1.11e15T2 |
| 53 | 1−9.09e7T+3.29e15T2 |
| 59 | 1−1.20e8T+8.66e15T2 |
| 61 | 1−1.61e8T+1.16e16T2 |
| 67 | 1+1.69e7T+2.72e16T2 |
| 71 | 1−3.87e7T+4.58e16T2 |
| 73 | 1+3.71e8T+5.88e16T2 |
| 79 | 1+2.90e8T+1.19e17T2 |
| 83 | 1+6.61e7T+1.86e17T2 |
| 89 | 1+5.15e8T+3.50e17T2 |
| 97 | 1+1.21e9T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.45515797421618382168636858897, −9.901314402388447800410448349649, −8.819569574186548960052526734845, −8.204419687119722590493524350675, −7.09097034028184164890935309543, −5.62002697159388314009194207326, −4.14995652308792379693490378153, −3.66595135220253799211062890263, −2.63054842292787124980352537159, −0.30539367595966465353521831565,
0.30539367595966465353521831565, 2.63054842292787124980352537159, 3.66595135220253799211062890263, 4.14995652308792379693490378153, 5.62002697159388314009194207326, 7.09097034028184164890935309543, 8.204419687119722590493524350675, 8.819569574186548960052526734845, 9.901314402388447800410448349649, 11.45515797421618382168636858897