L(s) = 1 | + 11.1·2-s − 140.·3-s − 388.·4-s − 992.·5-s − 1.56e3·6-s + 1.05e4·7-s − 1.00e4·8-s + 70.0·9-s − 1.10e4·10-s + 1.31e4·11-s + 5.45e4·12-s + 1.17e5·14-s + 1.39e5·15-s + 8.73e4·16-s − 5.21e5·17-s + 779.·18-s − 9.83e5·19-s + 3.85e5·20-s − 1.48e6·21-s + 1.46e5·22-s − 7.72e5·23-s + 1.40e6·24-s − 9.68e5·25-s + 2.75e6·27-s − 4.10e6·28-s − 5.37e5·29-s + 1.55e6·30-s + ⋯ |
L(s) = 1 | + 0.491·2-s − 1.00·3-s − 0.758·4-s − 0.709·5-s − 0.492·6-s + 1.66·7-s − 0.864·8-s + 0.00356·9-s − 0.349·10-s + 0.270·11-s + 0.759·12-s + 0.817·14-s + 0.711·15-s + 0.333·16-s − 1.51·17-s + 0.00175·18-s − 1.73·19-s + 0.538·20-s − 1.66·21-s + 0.133·22-s − 0.575·23-s + 0.866·24-s − 0.496·25-s + 0.998·27-s − 1.26·28-s − 0.141·29-s + 0.349·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.6083795249 |
L(21) |
≈ |
0.6083795249 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−11.1T+512T2 |
| 3 | 1+140.T+1.96e4T2 |
| 5 | 1+992.T+1.95e6T2 |
| 7 | 1−1.05e4T+4.03e7T2 |
| 11 | 1−1.31e4T+2.35e9T2 |
| 17 | 1+5.21e5T+1.18e11T2 |
| 19 | 1+9.83e5T+3.22e11T2 |
| 23 | 1+7.72e5T+1.80e12T2 |
| 29 | 1+5.37e5T+1.45e13T2 |
| 31 | 1+1.53e6T+2.64e13T2 |
| 37 | 1+1.26e7T+1.29e14T2 |
| 41 | 1+2.44e7T+3.27e14T2 |
| 43 | 1−1.71e7T+5.02e14T2 |
| 47 | 1+3.36e7T+1.11e15T2 |
| 53 | 1−4.66e7T+3.29e15T2 |
| 59 | 1−7.34e7T+8.66e15T2 |
| 61 | 1−1.23e8T+1.16e16T2 |
| 67 | 1+1.40e8T+2.72e16T2 |
| 71 | 1−2.75e8T+4.58e16T2 |
| 73 | 1−1.68e8T+5.88e16T2 |
| 79 | 1+5.90e8T+1.19e17T2 |
| 83 | 1+2.27e8T+1.86e17T2 |
| 89 | 1−7.06e8T+3.50e17T2 |
| 97 | 1+7.39e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37115604193396644070987376538, −10.48653766389034196675013671790, −8.736746095232117077096448150918, −8.243345300112972195476067523827, −6.69132096405336939118286685954, −5.50928252472032588270237629808, −4.62959834361245506111026993171, −3.99405031623920950414103457590, −1.97212604537653278504411367083, −0.37274967091435788208787660415,
0.37274967091435788208787660415, 1.97212604537653278504411367083, 3.99405031623920950414103457590, 4.62959834361245506111026993171, 5.50928252472032588270237629808, 6.69132096405336939118286685954, 8.243345300112972195476067523827, 8.736746095232117077096448150918, 10.48653766389034196675013671790, 11.37115604193396644070987376538