Properties

Label 2-13e2-1.1-c9-0-15
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.1·2-s − 140.·3-s − 388.·4-s − 992.·5-s − 1.56e3·6-s + 1.05e4·7-s − 1.00e4·8-s + 70.0·9-s − 1.10e4·10-s + 1.31e4·11-s + 5.45e4·12-s + 1.17e5·14-s + 1.39e5·15-s + 8.73e4·16-s − 5.21e5·17-s + 779.·18-s − 9.83e5·19-s + 3.85e5·20-s − 1.48e6·21-s + 1.46e5·22-s − 7.72e5·23-s + 1.40e6·24-s − 9.68e5·25-s + 2.75e6·27-s − 4.10e6·28-s − 5.37e5·29-s + 1.55e6·30-s + ⋯
L(s)  = 1  + 0.491·2-s − 1.00·3-s − 0.758·4-s − 0.709·5-s − 0.492·6-s + 1.66·7-s − 0.864·8-s + 0.00356·9-s − 0.349·10-s + 0.270·11-s + 0.759·12-s + 0.817·14-s + 0.711·15-s + 0.333·16-s − 1.51·17-s + 0.00175·18-s − 1.73·19-s + 0.538·20-s − 1.66·21-s + 0.133·22-s − 0.575·23-s + 0.866·24-s − 0.496·25-s + 0.998·27-s − 1.26·28-s − 0.141·29-s + 0.349·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.6083795249\)
\(L(\frac12)\) \(\approx\) \(0.6083795249\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 11.1T + 512T^{2} \)
3 \( 1 + 140.T + 1.96e4T^{2} \)
5 \( 1 + 992.T + 1.95e6T^{2} \)
7 \( 1 - 1.05e4T + 4.03e7T^{2} \)
11 \( 1 - 1.31e4T + 2.35e9T^{2} \)
17 \( 1 + 5.21e5T + 1.18e11T^{2} \)
19 \( 1 + 9.83e5T + 3.22e11T^{2} \)
23 \( 1 + 7.72e5T + 1.80e12T^{2} \)
29 \( 1 + 5.37e5T + 1.45e13T^{2} \)
31 \( 1 + 1.53e6T + 2.64e13T^{2} \)
37 \( 1 + 1.26e7T + 1.29e14T^{2} \)
41 \( 1 + 2.44e7T + 3.27e14T^{2} \)
43 \( 1 - 1.71e7T + 5.02e14T^{2} \)
47 \( 1 + 3.36e7T + 1.11e15T^{2} \)
53 \( 1 - 4.66e7T + 3.29e15T^{2} \)
59 \( 1 - 7.34e7T + 8.66e15T^{2} \)
61 \( 1 - 1.23e8T + 1.16e16T^{2} \)
67 \( 1 + 1.40e8T + 2.72e16T^{2} \)
71 \( 1 - 2.75e8T + 4.58e16T^{2} \)
73 \( 1 - 1.68e8T + 5.88e16T^{2} \)
79 \( 1 + 5.90e8T + 1.19e17T^{2} \)
83 \( 1 + 2.27e8T + 1.86e17T^{2} \)
89 \( 1 - 7.06e8T + 3.50e17T^{2} \)
97 \( 1 + 7.39e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37115604193396644070987376538, −10.48653766389034196675013671790, −8.736746095232117077096448150918, −8.243345300112972195476067523827, −6.69132096405336939118286685954, −5.50928252472032588270237629808, −4.62959834361245506111026993171, −3.99405031623920950414103457590, −1.97212604537653278504411367083, −0.37274967091435788208787660415, 0.37274967091435788208787660415, 1.97212604537653278504411367083, 3.99405031623920950414103457590, 4.62959834361245506111026993171, 5.50928252472032588270237629808, 6.69132096405336939118286685954, 8.243345300112972195476067523827, 8.736746095232117077096448150918, 10.48653766389034196675013671790, 11.37115604193396644070987376538

Graph of the $Z$-function along the critical line