L(s) = 1 | − 2.58·2-s + 184.·3-s − 505.·4-s − 581.·5-s − 475.·6-s − 1.09e4·7-s + 2.62e3·8-s + 1.42e4·9-s + 1.50e3·10-s − 7.82e4·11-s − 9.30e4·12-s + 2.81e4·14-s − 1.07e5·15-s + 2.51e5·16-s − 1.69e5·17-s − 3.67e4·18-s − 3.98e5·19-s + 2.93e5·20-s − 2.01e6·21-s + 2.02e5·22-s + 1.48e6·23-s + 4.83e5·24-s − 1.61e6·25-s − 1.00e6·27-s + 5.51e6·28-s − 2.10e6·29-s + 2.76e5·30-s + ⋯ |
L(s) = 1 | − 0.114·2-s + 1.31·3-s − 0.986·4-s − 0.416·5-s − 0.149·6-s − 1.71·7-s + 0.226·8-s + 0.723·9-s + 0.0474·10-s − 1.61·11-s − 1.29·12-s + 0.196·14-s − 0.546·15-s + 0.961·16-s − 0.493·17-s − 0.0825·18-s − 0.700·19-s + 0.410·20-s − 2.25·21-s + 0.183·22-s + 1.10·23-s + 0.297·24-s − 0.826·25-s − 0.362·27-s + 1.69·28-s − 0.553·29-s + 0.0623·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.7422105706 |
L(21) |
≈ |
0.7422105706 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+2.58T+512T2 |
| 3 | 1−184.T+1.96e4T2 |
| 5 | 1+581.T+1.95e6T2 |
| 7 | 1+1.09e4T+4.03e7T2 |
| 11 | 1+7.82e4T+2.35e9T2 |
| 17 | 1+1.69e5T+1.18e11T2 |
| 19 | 1+3.98e5T+3.22e11T2 |
| 23 | 1−1.48e6T+1.80e12T2 |
| 29 | 1+2.10e6T+1.45e13T2 |
| 31 | 1−1.23e6T+2.64e13T2 |
| 37 | 1−1.48e5T+1.29e14T2 |
| 41 | 1−3.23e7T+3.27e14T2 |
| 43 | 1−2.06e7T+5.02e14T2 |
| 47 | 1+3.31e7T+1.11e15T2 |
| 53 | 1−4.81e7T+3.29e15T2 |
| 59 | 1+7.37e6T+8.66e15T2 |
| 61 | 1+3.78e7T+1.16e16T2 |
| 67 | 1+8.03e7T+2.72e16T2 |
| 71 | 1+4.97e7T+4.58e16T2 |
| 73 | 1−7.08e6T+5.88e16T2 |
| 79 | 1−1.85e8T+1.19e17T2 |
| 83 | 1+2.38e8T+1.86e17T2 |
| 89 | 1+3.02e6T+3.50e17T2 |
| 97 | 1−5.53e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74345090369188386253704944540, −9.727502121244043185298023839771, −9.103395319637289925129724990190, −8.192118360098464470372977702853, −7.32076923405487481390635352752, −5.77395634935902324919506736930, −4.28055985509102495840818449525, −3.29511391414836595803232550514, −2.49593792877133812964702100685, −0.38516062550432490548226981807,
0.38516062550432490548226981807, 2.49593792877133812964702100685, 3.29511391414836595803232550514, 4.28055985509102495840818449525, 5.77395634935902324919506736930, 7.32076923405487481390635352752, 8.192118360098464470372977702853, 9.103395319637289925129724990190, 9.727502121244043185298023839771, 10.74345090369188386253704944540