Properties

Label 2-13e2-1.1-c9-0-27
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 40.6·2-s − 254.·3-s + 1.14e3·4-s − 1.76e3·5-s + 1.03e4·6-s + 1.27e3·7-s − 2.56e4·8-s + 4.48e4·9-s + 7.16e4·10-s − 5.26e4·11-s − 2.90e5·12-s − 5.20e4·14-s + 4.47e5·15-s + 4.56e5·16-s − 2.23e5·17-s − 1.82e6·18-s − 5.45e5·19-s − 2.01e6·20-s − 3.25e5·21-s + 2.13e6·22-s − 1.10e6·23-s + 6.50e6·24-s + 1.15e6·25-s − 6.40e6·27-s + 1.46e6·28-s − 1.27e6·29-s − 1.82e7·30-s + ⋯
L(s)  = 1  − 1.79·2-s − 1.81·3-s + 2.22·4-s − 1.26·5-s + 3.25·6-s + 0.201·7-s − 2.20·8-s + 2.28·9-s + 2.26·10-s − 1.08·11-s − 4.03·12-s − 0.361·14-s + 2.28·15-s + 1.74·16-s − 0.648·17-s − 4.09·18-s − 0.959·19-s − 2.81·20-s − 0.364·21-s + 1.94·22-s − 0.823·23-s + 4.00·24-s + 0.589·25-s − 2.31·27-s + 0.449·28-s − 0.335·29-s − 4.10·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 40.6T + 512T^{2} \)
3 \( 1 + 254.T + 1.96e4T^{2} \)
5 \( 1 + 1.76e3T + 1.95e6T^{2} \)
7 \( 1 - 1.27e3T + 4.03e7T^{2} \)
11 \( 1 + 5.26e4T + 2.35e9T^{2} \)
17 \( 1 + 2.23e5T + 1.18e11T^{2} \)
19 \( 1 + 5.45e5T + 3.22e11T^{2} \)
23 \( 1 + 1.10e6T + 1.80e12T^{2} \)
29 \( 1 + 1.27e6T + 1.45e13T^{2} \)
31 \( 1 + 7.41e6T + 2.64e13T^{2} \)
37 \( 1 - 4.37e6T + 1.29e14T^{2} \)
41 \( 1 + 1.41e7T + 3.27e14T^{2} \)
43 \( 1 - 2.97e7T + 5.02e14T^{2} \)
47 \( 1 - 1.62e7T + 1.11e15T^{2} \)
53 \( 1 - 8.73e7T + 3.29e15T^{2} \)
59 \( 1 + 1.01e8T + 8.66e15T^{2} \)
61 \( 1 - 2.03e8T + 1.16e16T^{2} \)
67 \( 1 - 1.43e8T + 2.72e16T^{2} \)
71 \( 1 + 6.26e7T + 4.58e16T^{2} \)
73 \( 1 - 3.27e8T + 5.88e16T^{2} \)
79 \( 1 - 2.96e8T + 1.19e17T^{2} \)
83 \( 1 + 6.46e8T + 1.86e17T^{2} \)
89 \( 1 + 5.31e8T + 3.50e17T^{2} \)
97 \( 1 + 8.88e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89414842257844439961049681599, −9.830447285552277227132233124694, −8.412009732832923828051355973849, −7.54631147620291118977261153187, −6.77591111575741351450941866386, −5.57897680379157977825218894289, −4.17949615239517128010638071684, −2.02824436131446940760711689145, −0.59067012967632484528446641233, 0, 0.59067012967632484528446641233, 2.02824436131446940760711689145, 4.17949615239517128010638071684, 5.57897680379157977825218894289, 6.77591111575741351450941866386, 7.54631147620291118977261153187, 8.412009732832923828051355973849, 9.830447285552277227132233124694, 10.89414842257844439961049681599

Graph of the $Z$-function along the critical line