L(s) = 1 | + 6.08i·2-s + 25.6·3-s + 90.9·4-s − 442. i·5-s + 155. i·6-s + 761. i·7-s + 1.33e3i·8-s − 1.53e3·9-s + 2.69e3·10-s + 6.11e3i·11-s + 2.33e3·12-s − 4.63e3·14-s − 1.13e4i·15-s + 3.54e3·16-s − 3.75e4·17-s − 9.30e3i·18-s + ⋯ |
L(s) = 1 | + 0.537i·2-s + 0.548·3-s + 0.710·4-s − 1.58i·5-s + 0.294i·6-s + 0.839i·7-s + 0.919i·8-s − 0.699·9-s + 0.850·10-s + 1.38i·11-s + 0.389·12-s − 0.451·14-s − 0.867i·15-s + 0.216·16-s − 1.85·17-s − 0.376i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.832−0.554i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(−0.832−0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.832−0.554i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), −0.832−0.554i)
|
Particular Values
L(4) |
≈ |
1.507731204 |
L(21) |
≈ |
1.507731204 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−6.08iT−128T2 |
| 3 | 1−25.6T+2.18e3T2 |
| 5 | 1+442.iT−7.81e4T2 |
| 7 | 1−761.iT−8.23e5T2 |
| 11 | 1−6.11e3iT−1.94e7T2 |
| 17 | 1+3.75e4T+4.10e8T2 |
| 19 | 1+3.39e3iT−8.93e8T2 |
| 23 | 1−2.98e4T+3.40e9T2 |
| 29 | 1+4.22e4T+1.72e10T2 |
| 31 | 1−1.24e5iT−2.75e10T2 |
| 37 | 1−1.42e5iT−9.49e10T2 |
| 41 | 1−7.14e4iT−1.94e11T2 |
| 43 | 1−1.27e4T+2.71e11T2 |
| 47 | 1−4.37e5iT−5.06e11T2 |
| 53 | 1+1.01e6T+1.17e12T2 |
| 59 | 1−1.75e6iT−2.48e12T2 |
| 61 | 1+1.69e6T+3.14e12T2 |
| 67 | 1+3.41e6iT−6.06e12T2 |
| 71 | 1−7.94e5iT−9.09e12T2 |
| 73 | 1−3.45e6iT−1.10e13T2 |
| 79 | 1−6.86e6T+1.92e13T2 |
| 83 | 1−8.04e6iT−2.71e13T2 |
| 89 | 1+1.04e6iT−4.42e13T2 |
| 97 | 1+1.12e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.06889390572161552111644043656, −11.05466799468092322355906249018, −9.344931979027043292945031046061, −8.787637668857675938594935898361, −7.933958511188083648795183485527, −6.66781976316938354468471022592, −5.43402158103082561362038619090, −4.56286045338036693677559561532, −2.58491151263156800527334546718, −1.68332094634570567120522687748,
0.31046053490682974188110448157, 2.15963351939169272562687605739, 3.02392806469875763319021746088, 3.78521356703745734755941469579, 6.08764458354798407934828102684, 6.83837184544700636474125966248, 7.83017300376142524617741639311, 9.151227873606653693468743795214, 10.53470947382804893407822784745, 11.01883215499156510589234734589