L(s) = 1 | + 6.08i·2-s + 25.6·3-s + 90.9·4-s − 442. i·5-s + 155. i·6-s + 761. i·7-s + 1.33e3i·8-s − 1.53e3·9-s + 2.69e3·10-s + 6.11e3i·11-s + 2.33e3·12-s − 4.63e3·14-s − 1.13e4i·15-s + 3.54e3·16-s − 3.75e4·17-s − 9.30e3i·18-s + ⋯ |
L(s) = 1 | + 0.537i·2-s + 0.548·3-s + 0.710·4-s − 1.58i·5-s + 0.294i·6-s + 0.839i·7-s + 0.919i·8-s − 0.699·9-s + 0.850·10-s + 1.38i·11-s + 0.389·12-s − 0.451·14-s − 0.867i·15-s + 0.216·16-s − 1.85·17-s − 0.376i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.507731204\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.507731204\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 6.08iT - 128T^{2} \) |
| 3 | \( 1 - 25.6T + 2.18e3T^{2} \) |
| 5 | \( 1 + 442. iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 761. iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 6.11e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 3.75e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 3.39e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 2.98e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 4.22e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.24e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 1.42e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 7.14e4iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 1.27e4T + 2.71e11T^{2} \) |
| 47 | \( 1 - 4.37e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.01e6T + 1.17e12T^{2} \) |
| 59 | \( 1 - 1.75e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 1.69e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 3.41e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 7.94e5iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 3.45e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 6.86e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 8.04e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 1.04e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 1.12e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06889390572161552111644043656, −11.05466799468092322355906249018, −9.344931979027043292945031046061, −8.787637668857675938594935898361, −7.933958511188083648795183485527, −6.66781976316938354468471022592, −5.43402158103082561362038619090, −4.56286045338036693677559561532, −2.58491151263156800527334546718, −1.68332094634570567120522687748,
0.31046053490682974188110448157, 2.15963351939169272562687605739, 3.02392806469875763319021746088, 3.78521356703745734755941469579, 6.08764458354798407934828102684, 6.83837184544700636474125966248, 7.83017300376142524617741639311, 9.151227873606653693468743795214, 10.53470947382804893407822784745, 11.01883215499156510589234734589