L(s) = 1 | + 0.679i·2-s + 62.4·3-s + 127.·4-s + 439. i·5-s + 42.4i·6-s + 1.30e3i·7-s + 173. i·8-s + 1.71e3·9-s − 298.·10-s + 574. i·11-s + 7.96e3·12-s − 884.·14-s + 2.74e4i·15-s + 1.62e4·16-s + 1.12e4·17-s + 1.16e3i·18-s + ⋯ |
L(s) = 1 | + 0.0600i·2-s + 1.33·3-s + 0.996·4-s + 1.57i·5-s + 0.0801i·6-s + 1.43i·7-s + 0.119i·8-s + 0.783·9-s − 0.0943·10-s + 0.130i·11-s + 1.33·12-s − 0.0861·14-s + 2.09i·15-s + 0.989·16-s + 0.556·17-s + 0.0470i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(4.364931168\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.364931168\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 0.679iT - 128T^{2} \) |
| 3 | \( 1 - 62.4T + 2.18e3T^{2} \) |
| 5 | \( 1 - 439. iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 1.30e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 574. iT - 1.94e7T^{2} \) |
| 17 | \( 1 - 1.12e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 4.10e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 4.42e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 1.45e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.22e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 4.20e4iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 8.76e4iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 7.49e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 9.40e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 9.24e5T + 1.17e12T^{2} \) |
| 59 | \( 1 + 6.32e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 6.44e4T + 3.14e12T^{2} \) |
| 67 | \( 1 + 1.94e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 4.72e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 1.92e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 1.50e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 1.87e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 4.37e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 - 1.77e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58281570568572309631898587626, −10.86769415478333527641450731479, −9.646384107169439617651997374753, −8.683821605932493888748796583076, −7.52677736023996231087455014014, −6.79434945879940001105142766874, −5.61185193615562784602982553979, −3.33056681055872930494605730692, −2.71764911251562136727618335815, −2.04823502054747035473090639917,
0.906863534468228296462009163150, 1.77569013931811317115581596312, 3.32725826919622788498347917240, 4.25673496345806576617069962156, 5.83358179415957682640647214564, 7.53354971571117789724717197621, 7.894460781282075737452949829100, 9.095060904004543685195907615462, 9.993984046130347293686461612051, 11.13537051044486418551071057085