L(s) = 1 | + (−1.15 − 1.15i)3-s + (2.51 + 2.51i)5-s − 4.37i·7-s − 0.313i·9-s + (−3.31 − 0.130i)11-s + (−2.19 − 2.19i)13-s − 5.82i·15-s + 0.470i·17-s + (−0.632 + 0.632i)19-s + (−5.07 + 5.07i)21-s − 6.62·23-s + 7.61i·25-s + (−3.84 + 3.84i)27-s + (−0.0549 − 0.0549i)29-s − 0.184i·31-s + ⋯ |
L(s) = 1 | + (−0.669 − 0.669i)3-s + (1.12 + 1.12i)5-s − 1.65i·7-s − 0.104i·9-s + (−0.999 − 0.0393i)11-s + (−0.609 − 0.609i)13-s − 1.50i·15-s + 0.114i·17-s + (−0.145 + 0.145i)19-s + (−1.10 + 1.10i)21-s − 1.38·23-s + 1.52i·25-s + (−0.739 + 0.739i)27-s + (−0.0102 − 0.0102i)29-s − 0.0331i·31-s + ⋯ |
Λ(s)=(=(1408s/2ΓC(s)L(s)(−0.981+0.192i)Λ(2−s)
Λ(s)=(=(1408s/2ΓC(s+1/2)L(s)(−0.981+0.192i)Λ(1−s)
Degree: |
2 |
Conductor: |
1408
= 27⋅11
|
Sign: |
−0.981+0.192i
|
Analytic conductor: |
11.2429 |
Root analytic conductor: |
3.35304 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1408(1055,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1408, ( :1/2), −0.981+0.192i)
|
Particular Values
L(1) |
≈ |
0.6504377470 |
L(21) |
≈ |
0.6504377470 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(3.31+0.130i)T |
good | 3 | 1+(1.15+1.15i)T+3iT2 |
| 5 | 1+(−2.51−2.51i)T+5iT2 |
| 7 | 1+4.37iT−7T2 |
| 13 | 1+(2.19+2.19i)T+13iT2 |
| 17 | 1−0.470iT−17T2 |
| 19 | 1+(0.632−0.632i)T−19iT2 |
| 23 | 1+6.62T+23T2 |
| 29 | 1+(0.0549+0.0549i)T+29iT2 |
| 31 | 1+0.184iT−31T2 |
| 37 | 1+(3.55+3.55i)T+37iT2 |
| 41 | 1−3.77T+41T2 |
| 43 | 1+(−4.82−4.82i)T+43iT2 |
| 47 | 1−0.258iT−47T2 |
| 53 | 1+(5.27+5.27i)T+53iT2 |
| 59 | 1+(−1.64+1.64i)T−59iT2 |
| 61 | 1+(9.05+9.05i)T+61iT2 |
| 67 | 1+(1.83+1.83i)T+67iT2 |
| 71 | 1−13.1T+71T2 |
| 73 | 1+10.7T+73T2 |
| 79 | 1−1.80T+79T2 |
| 83 | 1+(8.61−8.61i)T−83iT2 |
| 89 | 1−14.8iT−89T2 |
| 97 | 1+9.13T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.618792980739799168997875159664, −7.945506782845948305033440101852, −7.43105546533549836621949054346, −6.67642863378061894463314130257, −6.07242112049273884135203150490, −5.25021705846912243340867949209, −3.94114959236865649260506400877, −2.85130920901725258489155441373, −1.71108756537989230322167093228, −0.26168129366855675831137924855,
1.90163899193552335997898757252, 2.56959482512589604338719243421, 4.44354075863664054929190780305, 5.06919143258309035331213719388, 5.67496477715914504351444710782, 6.12858487244138033752132547040, 7.67325371245069764265661364294, 8.632368934720684850015941003524, 9.182379869321908811580539227701, 9.900156767130795178484296974233