L(s) = 1 | − 5·5-s − 4·7-s − 40·11-s − 90·13-s + 70·17-s + 40·19-s − 108·23-s + 25·25-s − 166·29-s − 40·31-s + 20·35-s − 130·37-s + 310·41-s − 268·43-s + 556·47-s − 327·49-s + 370·53-s + 200·55-s − 240·59-s − 130·61-s + 450·65-s + 876·67-s + 840·71-s + 250·73-s + 160·77-s − 880·79-s + 188·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.215·7-s − 1.09·11-s − 1.92·13-s + 0.998·17-s + 0.482·19-s − 0.979·23-s + 1/5·25-s − 1.06·29-s − 0.231·31-s + 0.0965·35-s − 0.577·37-s + 1.18·41-s − 0.950·43-s + 1.72·47-s − 0.953·49-s + 0.958·53-s + 0.490·55-s − 0.529·59-s − 0.272·61-s + 0.858·65-s + 1.59·67-s + 1.40·71-s + 0.400·73-s + 0.236·77-s − 1.25·79-s + 0.248·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.9455140507 |
L(21) |
≈ |
0.9455140507 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+pT |
good | 7 | 1+4T+p3T2 |
| 11 | 1+40T+p3T2 |
| 13 | 1+90T+p3T2 |
| 17 | 1−70T+p3T2 |
| 19 | 1−40T+p3T2 |
| 23 | 1+108T+p3T2 |
| 29 | 1+166T+p3T2 |
| 31 | 1+40T+p3T2 |
| 37 | 1+130T+p3T2 |
| 41 | 1−310T+p3T2 |
| 43 | 1+268T+p3T2 |
| 47 | 1−556T+p3T2 |
| 53 | 1−370T+p3T2 |
| 59 | 1+240T+p3T2 |
| 61 | 1+130T+p3T2 |
| 67 | 1−876T+p3T2 |
| 71 | 1−840T+p3T2 |
| 73 | 1−250T+p3T2 |
| 79 | 1+880T+p3T2 |
| 83 | 1−188T+p3T2 |
| 89 | 1−726T+p3T2 |
| 97 | 1+1550T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.355927509627335852473984556907, −8.086919121630046029862346378856, −7.62668597849544585483371635958, −6.96692062986203239792854121155, −5.62248139232690598008883731919, −5.12646340000089761802342101097, −4.03089947384815292088439117493, −2.99388485233309469256197650230, −2.10796208857406477375355135679, −0.45362168349166410274509632703,
0.45362168349166410274509632703, 2.10796208857406477375355135679, 2.99388485233309469256197650230, 4.03089947384815292088439117493, 5.12646340000089761802342101097, 5.62248139232690598008883731919, 6.96692062986203239792854121155, 7.62668597849544585483371635958, 8.086919121630046029862346378856, 9.355927509627335852473984556907