L(s) = 1 | + 5-s + (1 − i)13-s + (−1 − i)17-s + 25-s + 2i·29-s + (1 + i)37-s − 2·41-s − i·49-s + (1 − i)53-s + (1 − i)65-s + (−1 + i)73-s + (−1 − i)85-s + 2i·89-s + (−1 − i)97-s + 2i·109-s + ⋯ |
L(s) = 1 | + 5-s + (1 − i)13-s + (−1 − i)17-s + 25-s + 2i·29-s + (1 + i)37-s − 2·41-s − i·49-s + (1 − i)53-s + (1 − i)65-s + (−1 + i)73-s + (−1 − i)85-s + 2i·89-s + (−1 − i)97-s + 2i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.315731624\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.315731624\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 17 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + 2T + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.750468171704631929740761426681, −8.819825118749431193299193415884, −8.356620180901545215757275275054, −7.04522918523971434102280963918, −6.50447129242142655992783928096, −5.47128246144532710457912472558, −4.91304121345842909654633126375, −3.51573612738716185265442853736, −2.59686168500782016158249376578, −1.32639248226309068763830315054,
1.57524917341929851110694534915, 2.45924310097564594588447621042, 3.87085004248764801643048610709, 4.63430813009946904863747690975, 5.99698087262425325432497810660, 6.19668732674116076915441533266, 7.22003887251406042531982736089, 8.379783667186916001121314056584, 8.958377295751747429461176436404, 9.704891110795053292508302904530