L(s) = 1 | + 5-s + (1 − i)13-s + (−1 − i)17-s + 25-s + 2i·29-s + (1 + i)37-s − 2·41-s − i·49-s + (1 − i)53-s + (1 − i)65-s + (−1 + i)73-s + (−1 − i)85-s + 2i·89-s + (−1 − i)97-s + 2i·109-s + ⋯ |
L(s) = 1 | + 5-s + (1 − i)13-s + (−1 − i)17-s + 25-s + 2i·29-s + (1 + i)37-s − 2·41-s − i·49-s + (1 − i)53-s + (1 − i)65-s + (−1 + i)73-s + (−1 − i)85-s + 2i·89-s + (−1 − i)97-s + 2i·109-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)(0.973+0.229i)Λ(1−s)
Λ(s)=(=(1440s/2ΓC(s)L(s)(0.973+0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
1440
= 25⋅32⋅5
|
Sign: |
0.973+0.229i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1440(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1440, ( :0), 0.973+0.229i)
|
Particular Values
L(21) |
≈ |
1.315731624 |
L(21) |
≈ |
1.315731624 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1+i)T−iT2 |
| 17 | 1+(1+i)T+iT2 |
| 19 | 1−T2 |
| 23 | 1−iT2 |
| 29 | 1−2iT−T2 |
| 31 | 1+T2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1+2T+T2 |
| 43 | 1−iT2 |
| 47 | 1+iT2 |
| 53 | 1+(−1+i)T−iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1−T2 |
| 83 | 1−iT2 |
| 89 | 1−2iT−T2 |
| 97 | 1+(1+i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.750468171704631929740761426681, −8.819825118749431193299193415884, −8.356620180901545215757275275054, −7.04522918523971434102280963918, −6.50447129242142655992783928096, −5.47128246144532710457912472558, −4.91304121345842909654633126375, −3.51573612738716185265442853736, −2.59686168500782016158249376578, −1.32639248226309068763830315054,
1.57524917341929851110694534915, 2.45924310097564594588447621042, 3.87085004248764801643048610709, 4.63430813009946904863747690975, 5.99698087262425325432497810660, 6.19668732674116076915441533266, 7.22003887251406042531982736089, 8.379783667186916001121314056584, 8.958377295751747429461176436404, 9.704891110795053292508302904530