Properties

Label 2-1445-1.1-c1-0-37
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.82·2-s + 2.83·3-s + 1.31·4-s + 5-s − 5.15·6-s + 3.11·7-s + 1.24·8-s + 5.01·9-s − 1.82·10-s − 3.80·11-s + 3.71·12-s − 4.66·13-s − 5.67·14-s + 2.83·15-s − 4.90·16-s − 9.13·18-s + 3.26·19-s + 1.31·20-s + 8.82·21-s + 6.91·22-s + 3.45·23-s + 3.53·24-s + 25-s + 8.48·26-s + 5.71·27-s + 4.09·28-s + 8.09·29-s + ⋯
L(s)  = 1  − 1.28·2-s + 1.63·3-s + 0.656·4-s + 0.447·5-s − 2.10·6-s + 1.17·7-s + 0.441·8-s + 1.67·9-s − 0.575·10-s − 1.14·11-s + 1.07·12-s − 1.29·13-s − 1.51·14-s + 0.731·15-s − 1.22·16-s − 2.15·18-s + 0.749·19-s + 0.293·20-s + 1.92·21-s + 1.47·22-s + 0.720·23-s + 0.722·24-s + 0.200·25-s + 1.66·26-s + 1.09·27-s + 0.773·28-s + 1.50·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801982014\)
\(L(\frac12)\) \(\approx\) \(1.801982014\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + 1.82T + 2T^{2} \)
3 \( 1 - 2.83T + 3T^{2} \)
7 \( 1 - 3.11T + 7T^{2} \)
11 \( 1 + 3.80T + 11T^{2} \)
13 \( 1 + 4.66T + 13T^{2} \)
19 \( 1 - 3.26T + 19T^{2} \)
23 \( 1 - 3.45T + 23T^{2} \)
29 \( 1 - 8.09T + 29T^{2} \)
31 \( 1 - 10.8T + 31T^{2} \)
37 \( 1 - 0.684T + 37T^{2} \)
41 \( 1 - 0.750T + 41T^{2} \)
43 \( 1 - 0.425T + 43T^{2} \)
47 \( 1 + 1.28T + 47T^{2} \)
53 \( 1 + 3.38T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 + 1.31T + 71T^{2} \)
73 \( 1 - 7.46T + 73T^{2} \)
79 \( 1 + 12.0T + 79T^{2} \)
83 \( 1 + 4.44T + 83T^{2} \)
89 \( 1 + 1.20T + 89T^{2} \)
97 \( 1 + 4.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.532102751719962543554139599553, −8.539397567201359927003822983149, −8.145498485462681218022110827613, −7.63420948160484542970414806563, −6.86154963617970139831252267644, −5.08025619097273792288731147997, −4.54893938253515031526606164447, −2.84404425695411457747647576371, −2.31611924987053397415744989037, −1.17850270895077677836140893519, 1.17850270895077677836140893519, 2.31611924987053397415744989037, 2.84404425695411457747647576371, 4.54893938253515031526606164447, 5.08025619097273792288731147997, 6.86154963617970139831252267644, 7.63420948160484542970414806563, 8.145498485462681218022110827613, 8.539397567201359927003822983149, 9.532102751719962543554139599553

Graph of the $Z$-function along the critical line